
JiST:
Java in Simulation Time

for

Scalable Simulation of
Mobile Ad hoc Networks

Rimon Barr
barr@cs.cornell.edu

Wireless Network Laboratory
Advisor: Prof. Z. J. Haas

MURI Demo
26 August 2003

http://www.cs.cornell.edu/barr/repository/jist/

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 2

the world today…

• Transparent Parallel and Optimistic Execution of
Discrete Event Simulations of MANETs in Java

• discrete event simulations are useful and needed
• but, most published ad hoc network simulations

• lack network size ~250 nodes; or

• compromise detail packet level; or

• curtail duration few minutes; or

• are of sparse density tens of nodes/km2; or
• etc…

• i.e. limited simulation scalability

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 3

the world today… in perspective

• A university campus
• Cornell students ~ 30,000
• Wireless devices per student average ~1
• Main campus < 4 km2.

• The United States military
• Troops deployed in Iraq 100-150,000 (in clusters)
• Wireless devices per soldier ???
• Territory 400,000km2

• And, predictions of
• smaller devices, better radios and chips
• smart dust, wearable/disposable/ubiquitous computing

Simulation scalability is important.

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 4

introduction to jist

• JiST – Java in Simulation Time
• extends object model and execution semantics

• simulations written in plain Java

• … to run discrete event simulations efficiently
• reduces serialization and context-switching overhead
• allows parallel and speculative simulation execution

• merges modern language and simulation semantics

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 5

jist functionality

• entities: extend object model with simulation time components
• simulation time invocation: event-based invocation
• timeless objects: pass-by-reference to avoid copy
• proxy entities: interface-based entity creation
• continuations: call and callback, blocking methods
• concurrency: channel, threads, monitors, locks…
• distribution: separators track entities across machines
• scripting: embed engines for Java, Python, Tcl, etc…

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 6

a basic example

• the “hello world” of event simulations

• demo!

class HelloWorld implements JistAPI.Entity
{
public void hello()
{

JistAPI.sleep(1);
hello();
System.out.println("hello world, " +

"time=" + JistAPI.getTime());
}

}

class HelloWorld implements JistAPI.Entity
{
public void hello()
{

JistAPI.sleep(1);
hello();
System.out.println("hello world, " +

"time=" + JistAPI.getTime());
}

}

hello world, time=1
hello world, time=2
hello world, time=3
etc.

Stack overflow @hello
JiSTJava

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 7

performance: event throughput

#
 e

ve
n

ts

Ji
S

T

G
lo

M
o

S
im

R
at

io

10^5 0.044s 0.435s 10%
10^6 0.262s 2.938s 9%
10^7 2.301s 28.04s 8%
10^8 22.48s 278.4s 8%

serial throughput
increase of 12x

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 8

performance: memory overhead

Memory Limit

JiST 36 bytes > 10^6 entities

Parsec 28536 bytes ~ 10^4 entities

JiST scales to more
entities per process

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 9

SWANS

• Scalable Wireless Ad hoc Network Simulator
• runs standard Java network applications
• allows vertical and horizontal aggregation

fil
es

cl
as

se
s

lin
es

JiST 26 65 9278
SWANS 52 115 12871

Other 16 26 2042
94 206 24191

§ larger than JiST code-base
§ simpler than GloMoSim

and ns2 implementations
§ less than 3 months

App

SWANS

JiST

Javasi
m

.
st

a
ck

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 10

performance: SWANS

• simulation configuration
• field 5x5km2; free-space path loss; no fading
• radio additive noise; standard power, gain, etc.
• link 802.11b
• network IPv4
• transport UDP
• mobility random waypoint: v=2-5, p=10
• application heartbeat neighbor discovery

• ran on:
• PIII 1.1GHz laptop
• 384 MB RAM
• Sun JDK 1.4.2

• memory consumption:
• 1.2KB per simulated node!
• demo!

1,000 10,000 100,000

ns2 þ ý ý
GloMoSim þ þ ý
SWANS þ þ þ

nodes

JiST:
Java in Simulation Time

for

Scalable Simulation of
Mobile Ad hoc Networks

THANKS!

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 12

ns2 is the gold standard
• C++ with Tcl bindings, O(n2)
• used extensively by community
• written for TCP simulation
• modified for ad hoc networks
• processor and memory intensive
• sequential; max. ~500 nodes

PDNS – parallel distributed ns2
• event loop uses RTI-KIT
• needs fast inter-connect
• distribute memory, ~1000 nodes

OpNet – popular commercial option
• good modeling capabilities
• poor scalability

custom-made simulators
• fast, specialized computation
• lack sophisticated execution and

also credibility

GloMoSim
• implemented in Parsec, a

custom C-like language
• entities are memory intensive
• requires “node aggregation,”

which imposes conservative
parallelism, loses Parsec benefits

• shown ~10,000 nodes on NUMA
machine (SPARC 1000, est. $300k)

SWAN
• implemented atop the parallel,

distributed DaSSF framework
• similar to GloMoSim

Simulation approaches
• languages (e.g. Parsec, Simula)
• libraries (e.g. Yansl, Compose)
• systems (e.g. TWOS, Warped)

existing alternatives

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 13

simulation time

• program time
• progress of program independent of time

• real time
• progress of program is dependent on time

• simulation time
• progress of time is dependent on program progress

• instructions take zero (simulation) time
• time explicitly advanced by the program, sleep

• simulation event loop embedded in virtual machine

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 14

extended object model

• program state contained in objects
• objects contained in entities

• each entity runs at its own simulation time
• as with objects, entities do not share state
• think of an entity as a simulation component

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 15

extended execution semantics

• entity references replaced with separators
• event channels; act as state-time boundary

• entity methods are an event interface
• simulation time invocation
• non-blocking; invoked at caller entity time; no continuation

Rimon Barr, Wireless Network Lab, Cornell University JiST: Java in Simulation Time – slide 16

benefits of the jist approach

• more than just scalability
• application-oriented benefits

• type safety source-target statically checked
• event types not required (implicit)
• event structures not required (implicit)
• debugging dispatch location and state available

• language-oriented benefits
• garbage collection memory savings, cleaner code
• reflection script-based configuration of simulations
• safety fine granularity of isolation
• Java standard language, compiler, runtime

• system-oriented benefits
• IPC no context switch; no serialization
• Java kernel cross-layer optimization
• robustness no memory leaks, no crashes
• rewriting no source-code access required
• concurrency supports parallel and speculative execution
• distribution provides a single system image abstraction

• hardware-oriented benefits
• cost COTS hardware, clusters (NOW)
• portability runs on everything

