
JiST:
Java in Simulation Time

for 

Scalable Simulation of 
Mobile Ad hoc Networks

Rimon Barr and Zygmunt J. Haas
Wireless Network Laboratory

Cornell University

2nd IRTF Ad hoc Network Scalability Meeting
18 September 2003



JiST: Java in Simulation Time – slide 2

simulation scalability is important

• discrete event simulations are useful and needed
• but, most published ad hoc network simulations

• lack network size ~250 nodes;  or 
• compromise detail packet level; or
• curtail duration few minutes; or
• are of sparse density <10/km2

i.e. limited simulation scalability

• A university campus
• 30,000 students, < 4 km2, 1 device/student

• The United States military
• 100-150,000 troops, clustered

• Sensor networks, smart dust, Ubicomp
• Many thousands of wireless devices in environment

Simulation scalability is important



JiST: Java in Simulation Time – slide 3

JiST – Java in Simulation Time

• JiST extends Java object model and execution semantics
• … to run discrete event simulations: transparently

• simulations written in plain Java
• compiled classes are modified at load time

and efficiently
• reduces serialization and context-switching overhead
• allows parallel and speculative simulation execution

• Merges modern language and simulation semantics
• run Java programs in simulation time



JiST: Java in Simulation Time – slide 4

performance: event throughput (and memory)

#
 e

ve
n

ts

Ji
S

T

G
lo

M
o

S
im

R
at

io

10^5 0.044s 0.435s 10%
10^6 0.262s 2.938s 9%
10^7 2.301s 28.04s 8%
10^8 22.48s 278.4s 8%

serial throughput 
increase of 12x



JiST: Java in Simulation Time – slide 5

SWANS

• Scalable Wireless Ad hoc Network Simulator
• runs standard Java network applications
• allows vertical and horizontal aggregation

§ shorter and simpler than 
GloMoSim and ns2
§ developed in <3 months

App

SWANS

JiST

Javasi
m

. 
st

a
ck

fi
le

s

cl
as

se
s

lin
es

JiST 26 69 9548
SWANS 61 127 13999

Other 18 30 2415
105 236 25962



JiST: Java in Simulation Time – slide 6

performance: SWANS

• simulation configuration
• field 5x5km2; free-space path loss; no fading
• mobility random waypoint: v=2-5m, p=10s
• radio additive noise; standard power, gain, etc.
• link 802.11b
• network IPv4
• transport UDP
• application heartbeat neighbor discovery

• ran on:
• PIII 1.1GHz laptop
• only 384 MB RAM
• Sun JDK 1.4.2

• memory consumption:
• 1.2KB per simulated node!

1,000 10,000 100,000

ns2 þ ý ý
Glomo þ þ ý
SWANS þ þ þ

nodes



JiST: Java in Simulation Time – slide 7

backup slides



JiST: Java in Simulation Time – slide 8

ns2 is the gold standard
• C++ with Tcl bindings, O(n2)
• used extensively by community
• written for TCP simulation
• modified for ad hoc networks
• processor and memory intensive
• sequential; max. ~500 nodes

PDNS – parallel distributed ns2
• event loop uses RTI-KIT
• needs fast inter-connect
• distribute memory, ~1000 nodes

OpNet – popular commercial option
• good modeling capabilities
• poor scalability

custom-made simulators
• fast, specialized computation
• lack sophisticated execution and 

also credibility

GloMoSim
• implemented in Parsec, a 

custom C-like language
• entities are memory intensive
• requires “node aggregation,”  

which imposes conservative 
parallelism, loses Parsec benefits

• shown ~10,000 nodes on NUMA 
machine (SPARC 1000, est. $300k)

SWAN
• implemented atop the parallel,

distributed DaSSF framework
• similar to GloMoSim

Simulation approaches
• languages (e.g. Parsec, Simula)
• libraries (e.g. Yansl, Compose)
• systems (e.g. TWOS, Warped)

existing alternatives



JiST: Java in Simulation Time – slide 9

a lot more than simulation time

• timeless objects: pass-by-reference to avoid copy
• proxy entities: interface-based entity creation
• continuations: call and callback, blocking methods
• concurrency: channel, threads, monitors, locks…
• distribution: separators track entities across machines
• scripting: embed engines for Java, Python, Tcl, etc…



JiST: Java in Simulation Time – slide 10

benefits of the jist approach

• more than just scalability.
• application-oriented benefits

• type safety source-target statically checked
• event types not required (implicit)
• event structures not required (implicit)
• debugging dispatch location and state available

• language-oriented benefits
• garbage collection memory savings, cleaner code
• reflection script-based configuration of simulations
• safety fine granularity of isolation
• Java standard language, compiler, runtime

• system-oriented benefits
• IPC no context switch; no serialization
• Java kernel cross-layer optimization
• robustness no memory leaks, no crashes
• rewriting no source-code access required
• concurrency supports parallel and speculative execution
• distribution provides a single system image abstraction

• hardware-oriented benefits
• cost COTS hardware, clusters (NOW)
• portability pure Java; “runs everywhere”



JiST: Java in Simulation Time – slide 11

performance: memory overhead

Memory Limit

JiST 36 bytes > 10^6 entities

Parsec 28536 bytes ~ 10^4 entities

JiST scales to more
entities per process


