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simulation scalability is important

• discrete event simulations are useful and needed
• but, most published ad hoc network simulations

• lack network size ~250 nodes;  or 
• compromise detail packet level; or
• curtail duration few minutes; or
• are of sparse density <10/km2

i.e. limited simulation scalability

• A university campus
• 30,000 students, < 4 km2, 1 device/student

• The United States military
• 100-150,000 troops, clustered

• Sensor networks, smart dust, Ubicomp
• Many thousands of wireless devices in environment

Simulation scalability is important
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JiST – Java in Simulation Time

• JiST extends Java object model and execution semantics
• … to run discrete event simulations: transparently

• simulations written in plain Java
• compiled classes are modified at load time

and efficiently
• reduces serialization and context-switching overhead
• allows parallel and speculative simulation execution

• Merges modern language and simulation semantics
• run Java programs in simulation time
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performance: event throughput (and memory)
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10^5 0.044s 0.435s 10%
10^6 0.262s 2.938s 9%
10^7 2.301s 28.04s 8%
10^8 22.48s 278.4s 8%

serial throughput 
increase of 12x
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SWANS

• Scalable Wireless Ad hoc Network Simulator
• runs standard Java network applications
• allows vertical and horizontal aggregation

§ shorter and simpler than 
GloMoSim and ns2
§ developed in <3 months
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SWANS 61 127 13999

Other 18 30 2415
105 236 25962
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performance: SWANS

• simulation configuration
• field 5x5km2; free-space path loss; no fading
• mobility random waypoint: v=2-5m, p=10s
• radio additive noise; standard power, gain, etc.
• link 802.11b
• network IPv4
• transport UDP
• application heartbeat neighbor discovery

• ran on:
• PIII 1.1GHz laptop
• only 384 MB RAM
• Sun JDK 1.4.2

• memory consumption:
• 1.2KB per simulated node!

1,000 10,000 100,000

ns2 þ ý ý
Glomo þ þ ý
SWANS þ þ þ

nodes
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backup slides
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ns2 is the gold standard
• C++ with Tcl bindings, O(n2)
• used extensively by community
• written for TCP simulation
• modified for ad hoc networks
• processor and memory intensive
• sequential; max. ~500 nodes

PDNS – parallel distributed ns2
• event loop uses RTI-KIT
• needs fast inter-connect
• distribute memory, ~1000 nodes

OpNet – popular commercial option
• good modeling capabilities
• poor scalability

custom-made simulators
• fast, specialized computation
• lack sophisticated execution and 

also credibility

GloMoSim
• implemented in Parsec, a 

custom C-like language
• entities are memory intensive
• requires “node aggregation,”  

which imposes conservative 
parallelism, loses Parsec benefits

• shown ~10,000 nodes on NUMA 
machine (SPARC 1000, est. $300k)

SWAN
• implemented atop the parallel,

distributed DaSSF framework
• similar to GloMoSim

Simulation approaches
• languages (e.g. Parsec, Simula)
• libraries (e.g. Yansl, Compose)
• systems (e.g. TWOS, Warped)

existing alternatives
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a lot more than simulation time

• timeless objects: pass-by-reference to avoid copy
• proxy entities: interface-based entity creation
• continuations: call and callback, blocking methods
• concurrency: channel, threads, monitors, locks…
• distribution: separators track entities across machines
• scripting: embed engines for Java, Python, Tcl, etc…
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benefits of the jist approach

• more than just scalability.
• application-oriented benefits

• type safety source-target statically checked
• event types not required (implicit)
• event structures not required (implicit)
• debugging dispatch location and state available

• language-oriented benefits
• garbage collection memory savings, cleaner code
• reflection script-based configuration of simulations
• safety fine granularity of isolation
• Java standard language, compiler, runtime

• system-oriented benefits
• IPC no context switch; no serialization
• Java kernel cross-layer optimization
• robustness no memory leaks, no crashes
• rewriting no source-code access required
• concurrency supports parallel and speculative execution
• distribution provides a single system image abstraction

• hardware-oriented benefits
• cost COTS hardware, clusters (NOW)
• portability pure Java; “runs everywhere”
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performance: memory overhead

Memory Limit

JiST 36 bytes > 10^6 entities

Parsec 28536 bytes ~ 10^4 entities

JiST scales to more
entities per process


