
Dynamic Source Routing for SWANS

Ben Viglietta
bsv3@cornell.edu

Introduction
I have implemented the Dynamic Source Routing Protocol for Mobile Ad Hoc Networks
(DSR) for the SWANS network simulator, built upon Rimon Barr’s Java in Simulation
Time (JiST) simulation platform. This paper describes the design of the routing protocol,
the methods I used to test it, and current and possible future optimizations of the protocol.
This implementation of DSR was based upon the DSR draft specification found at
http://www.ietf.org/internet-drafts/draft- ietf-manet-dsr-09.txt, and it is conformant to that
specification, except in some minor details that will be noted later.

Design
Unlike some other routing protocols, DSR adds its own header to all packets sent through
the network; for data packets this header usually contains the intended source route,
among other things. DSR can therefore be thought of simply as another level in the
network protocol stack, existing between the network layer and the link layer. Each DSR
header contains one or more DSR options indicating the purpose of the packet: route
request, route error, acknowledgement, and so on. There are three main tasks that DSR
has to perform: routing a data packet through the network; route discovery, in which DSR
determines a new route from one node to another; and route maintenance, in which DSR
recognizes and corrects broken routes.

Route Cache
The central data structure for each node using DSR is the route cache, which contains the
node’s knowledge of the current network topology. The DSR specification suggests two
possible implementations for the route cache. The first is the “path cache,” in which each
node keeps a list of all paths that it knows of between any two nodes, and the second is
the “link cache,” in which each node maintains a graph representing the current state of
the network.

The route cache I have implemented is a variation of the path cache. There is no reason
in the current DSR implementation for a node to keep track of routes in which it is not
one of the endpoints, so each node just keeps a list of all known routes from itself to each
possible destination. The cache is stored as a hash table, mapping a destination to a list
of known routes to that destination. The benefits of this implementation are that it is very
fast to look up a route or determine that none exists, that it is a smaller data structure than
the straightforward path cache, and that it is easy to ensure that all routes are loop-free.
The main drawback is that it is probably a larger data structure than the link cache,

especially if the network is very dense. Also, it is not as flexible as a link cache: if a link
cache learned of a route from A to B and a route from B to C, it would be able to deduce
a route from A to C, while a path-based cache cannot.

It is possible for the route cache to contain more than one route to a given destination. In
that case, shorter routes are preferred over longer routes, with ties broken arbitrarily.

Route Discovery
When a node wants to send a packet to a destination for which there is no route in the
route cache, it begins the process of route discovery. A DSR packet containing a route
request option is broadcast to all nodes within range. Each node receiving the route
request proceeds to re-broadcast it to all nodes within range. If there is a route from the
originator of the route request to the destination, then the destination will eventually see
the route request and send a reply to the originator.

With all the broadcasting that occurs during route discovery, you have to be very careful
to avoid bogging down the network with floods of route requests. To this end, each node
maintains a data structure called a route request table. The route request table keeps track
of all route requests that a node has recently seen. If a node receives a route request that
exists in the route request table, it will not propagate it. This ensures that each node
broadcasts a given route request no more than once. The route request table also keeps
track of how frequently a given node has originated route requests for each destination,
thus ensuring that route requests are originated at a reasonable rate. Figure 1 displays the
logic used by a node upon receiving a route request.

When route discovery is in progress, any packets intended for a destination for which the
source does not yet know a route are kept in a queue called the send buffer. Every time
the source node receives a DSR message with a route reply option, it adds the new route
to the route cache and sends any messages waiting in the send buffer that can use the new
route.

Route Maintenance
Every time a node sends a packet using a DSR source route it is required to verify the
reachability of the next hop on the route. To do this, it can add an acknowledgement
request option to the DSR header. The next-hop node, upon receiving the packet, will
send back a DSR message containing an acknowledgement option. If the sender does not
receive such an acknowledgement within a specified time period, it retransmits the packet
along with another acknowledgement request.

The DSR specification mandates a data structure called a maintenance buffer that holds
the packets that are currently awaiting acknowledgement. However, no such data
structure exists explicitly in my code: this is one area where I found the JiST architecture
to be very useful. Instead of maintaining an explicit queue, for each packet sent I simply

Figure 1 – Receipt of a route request

scheduled an event to occur after an appropriate timeout that would either retransmit or
drop the packet, depending on whether an acknowledgement had been received at that
time. In effect, the JiST event queue became my maintenance buffer, which I found
simplified the route maintenance code significantly.

After a certain number of attempts to send the packet without any acknowledgement, the
sender will consider the link broken. (The number of transmission attempts is currently
three.) After discovering the broken link, the sender sends a DSR message to the
originator of the message containing a route error option indicating the link in its route
that was broken. The originator then removes from its route cache all paths that use the
broken link. Unless the originator’s route cache contained multiple routes to some
destinations, it will initiate a new route discovery the next time a packet must be sent to
one of the destinations whose route relied on the broken link.

Sending a data packet
When a data packet is passed to DSR from the network layer, DSR strips off the IP
header, encapsulates it in a DSR header with the appropriate source route taken from the
route cache, and adds a new IP header. (If the route cache contains no route to the
destination, the packet waits in the send buffer while route discovery takes place.) The
packet is then sent along the given source route, with acknowledgements taking place at
every hop along the way. Figure 2 displays the logic used by a node upon receiving a
data packet.

receive route
request

add it to the route
request table

is it in route
request table?

ignore

is this node
the target?

send reply
re-broadcast

request

Y

Y

N

N

Figure 2 – Receipt of a data packet

Note that DSR does not provide any exactly-once semantics. If an acknowledgement is
lost, it can cause a message to be retransmitted unnecessarily, and so the same message
can be received more than once. Likewise, if a message is sent along a route that is
broken, it will be dropped and therefore not received at all.

Testing
To test the performance of DSR, I built a simulation program called CBR (for Constant
Bit Rate) that creates a two-dimensional field and places a number of nodes randomly
inside it. Among the nodes are client-server pairs that transmit packets to each other once
per second as the simulation progresses. The following parameters can be set:

• Routing protocol. Default is DSR.
• Dimensions of the field. Default is 1000x1000.
• Number of nodes. Default is 100.
• Number of client-server pairs. Default is 10.
• Number of transmissions. Default is 100.
• Packet loss probability. Default is 0.
• Node movement rate. Default is 0. Nodes move at discrete time intervals – the

higher this value is, the more frequently they move. When the time comes for
nodes to move, every node immediately moves to a random location in the field.

receive data
packet

hand it off to
transport

stop

forward packet
and wait timeout

send route
error to source

max
transmissions

exceeded?

is this its
destination?

ack received?

Y

Y

Y

N

N

N

This is not a very realistic model of node movement, but it suffices to test DSR’s
route maintenance features.

This program was used to perform all the tests described in this section. (Note: All the
tests described in this section were actually performed after applying the optimizations
described in the next section.)

Testing correctness
I first tested DSR in a small field. Experimentation revealed that the range of a node in
SWANS using default parameters for the field is around 700 meters. Therefore in a
300x300 field every node should be in range of every other node. Running CBR several
times in such a field containing fifty nodes with five client-server pairs with 100
transmissions each and no packet loss or movement yielded an average total of about 515
out of 500 messages delivered. In theory, with no packet loss or node movement, exactly
500 out of 500 messages should be delivered; however, packets do get lost in SWANS
even when you tell the network layer not to lose them. The culprit is the link layer,
which drops packets if it is too busy to send them. DSR has this problem a lot because
every packet is broadcast at the link layer. When packet loss is light, DSR actually ends
up sending more than the appropriate number of packets, because lost acknowledgements
cause packets to be retransmitted unnecessarily. Therefore 515 out of 500 messages
delivered indicates that DSR is working correctly for small fields.

I then tried a larger field that would require longer source routes, still without adding any
packet loss or node movement. In a 3000x3000 field with 200 nodes and five client-
server pairs with 100 transmissions each, the average number of messages received was
almost exactly 500. The average route length was about 2.5, so this indicates that DSR is
able to find and use non-trivial routes as well.

If you go to more client-server pairs, the number of messages received tends to get worse
as more messages get lost due to conflicts as the link layer. This is a regrettable side
effect of the fact that DSR always broadcasts at the link layer, but there is not a lot that
can be done in DSR to fix this problem, besides increasing the number of
retransmissions.

Adding packet loss to the simulation doesn’t really test anything new, since the
simulations already have packet loss even without specifying it. Adding node movement,
on the other hand, is a significant test, since DSR’s ability to identify and correct broken
routes is essential functionality. Figure 3 on the next page shows a graph of movement
rate versus the percentage of messages successfully received for a simulation as before
(3000x3000 field, 200 nodes, four client-server pairs, 100 transmissions each).
Whenever nodes are moving we can expect some packets to be lost, since a packet sent
using a broken source route will always be lost. Therefore the drop from 100% message
receipt on the left side of the graph to 90% in the middle is to be expected. Somewhere
around one movement every 15 seconds there is a precipitous drop in message receipt;
presumably this is the point at which the nodes are moving too fast for DSR to catch up.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4.
00

18
.0

0

32
.0

0

46
.0

0

60
.0

0

74
.0

0

88
.0

0

10
2.

00

11
6.

00

13
0.

00

14
4.

00

15
8.

00

17
2.

00

18
6.

00

20
0.

00

Movement Frequency (1/s)

M
es

sa
ge

s
R

ec
ei

ve
d

(%
)

0

1

2

3

4

5

6

7

8

9

1

23
4

46
7

70
0

93
3

11
66

13
99

16
32

18
65

20
98

23
31

25
64

27
97

30
30

32
63

34
96

37
29

39
62

41
95

44
28

46
61

48
94

Time (s)

M
em

or
y

U
se

 (
M

B
)

Figure 3 – Modeling node movement Figure 4 – Measuring memory usage

(Recall that each time the nodes move, the entire field is shuffled randomly, which can be
a very drastic change to the network topology. In real life node movement would be
more subtle, and repairing broken links would undoubtedly be faster.) From this graph
we can determine that DSR does in fact identify and correct broken routes, as long as the
nodes are not moving too rapidly.

Testing memory consumption
The tests in the preceding section indicate that DSR works, even to a reasonable degree in
the face of packet loss and node movement, but we must also consider resource costs.
The first priority is to ensure that DSR does not have any memory leaks. To that end, I
ran a simulation with several hundred nodes, a few of them transmitting continuously at a
rate of once per second, for 500 seconds. The resulting memory use is plotted in Figure
4. The steep drops in memory use in that graph are no doubt points where Java’s garbage
collector kicked in. Taking the garbage collection into account, we can see that overall
memory use is not increasing with time; if anything it appears to be decreasing. I’m at a
loss to explain that – maybe it has to do with some part of JiST that I’m not familiar with.
At any rate, it’s not increasing, which is what I intended to show.

The next step is to determine the amount of memory actually used by each node. To
calculate this, I ran simulations using various numbers of nodes and measured the
average memory use over a lengthy period. I did this both for DSR and for a baseline
routing protocol all of whose functions were no-ops. For the DSR tests there was a single
node transmitting continuously and all other nodes were in range of it, and for the
baseline tests of course nothing no traffic was occurring. The results are shown in Figure
5 on the next page.

Both graphs are ultimately linear, as expected. By calculating the slope of the line we
can determine the amount of memory used by a node in each test: for the baseline, it is
0.95 KB, and for DSR it is 3.22 KB. Taking the difference indicates that DSR by itself is
using about 2.27 KB for a single node with light traffic. That strikes me as a relatively
large number, but given the number of different data structures DSR has to maintain,

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

1.60E+04

1.80E+04

2

73
3

14
63

21
94

29
24

36
55

43
85

Number of Nodes

M
em

o
ry

 (
M

B
)

DSR

Baseline

Figure 5 – Memory used per node

including route cache, send buffer, route request table, maintenance buffer, and gratuitous
route reply table, it may not be. It’s hard for me to evaluate this number by itself without
any other implementations of routing algorithms to compare it to. When other routing
algorithms become available, the memory usage of DSR can be re-evaluated to determine
if it needs to be improved.

Optimizations
There are many potential optimizations that can be applied to DSR. The specification
itself describes many features that can improve performance but are not strictly required.
The testing as described above revealed several areas that seemed fruitful for
optimization. The two main optimization features that I ended up implementing were
automatic route shortening and passive acknowledgements.

Automatic route shortening
I found in my simulations that nodes were very frequently using routes that were longer
than necessary. For example, in a simulation of 100 nodes all of which were in range of
each other, the average route length among 1000 messages was 1.6, meaning that more
than half the time nodes were using a route other than the direct hop from source to
destination. I implemented automatic route shortening in an attempt to ameliorate this
situation.

If a packet is being sent along a sub-optimal route, it may happen that a node on the route
receives the packet before it is received by some of the nodes preceding it on the intended
source route – this means that those nodes preceding it on the source route are
superfluous and can safely be removed from the route. In this situation, the node
receiving the packet sends a gratuitous route reply to the originator of the message
informing the originator of the shorter available route.

It is important to limit the rate at which gratuitous route replies are sent to avoid flooding
the originator with them. Therefore a data structure called a gratuitous route reply table

is maintained in order to keep track of which nodes have recently been sent gratuitous
route replies. A gratuitous route reply will be sent to the originator of a packet only if the
originator does not exist in the gratuitous route reply table. The entries in the table are
removed after a certain timeout, thus limiting the rate of replies to a given originator.

The automatic route shortening seems to be effective at reducing route length. After
implementing automatic route shortening, the aforementioned test of 1000 messages sent
among 100 nodes all within range of each other now had an average route length of 1.07.
In a larger simulation with 2000 messages among 100 nodes not all in range of each
other, and with the nodes moving at a rate of once every 20 seconds, the average route
length dropped from 2.27 to 1.49, so the improvement seems to be appreciable.

Passive acknowledgements
Another issue I discovered while analyzing DSR’s performance was that there was a very
high ratio of administrative packets to data packets. This was due largely to the fact that
every data packet sent required a corresponding acknowledgement to be returned,
ensuring that the ratio was at least one to one. In fact, after factoring in route requests,
route replies, and route errors, the ratio was often much higher than one to one: in
experiments featuring substantial node movement or packet loss I observed ratios of up to
eight or nine administrative packets for every one data packet.

Passive acknowledgements were an attempt to address this problem. Instead of
requesting an explicit network- level acknowledgement, after forwarding a packet along
its route, a node would wait to overhear the same packet being forwarded to its next hop.
This would be taken as an indication that the packet had been received, and it would
therefore not be retransmitted. Passive acknowledgements are completely free compared
to network- level acknowledgements: if the passive acknowledgement is overheard, no
extra messages need to be sent besides the data packet itself.

If no passive acknowledgement is overheard within a specified timeout, the message will
be retransmitted, this time using the standard network- level acknowledgement request. If
no acknowledgement is received after the normal number of retransmissions, then a route
error is sent as usual to the originator of the message.

Obviously passive acknowledgements cannot be used on the last hop of the route, since
the packet will not be retransmitted by the final destination node. Therefore they are of
little benefit for short routes. However, for longer routes there is significant benefit: in a
500-node simulation transmitting a total of 3000 packets with an average route length
around 5.5 and substantial node movement, the ratio of administrative packets to data
packets dropped from 8.25:1 to 1.35:1. Since there is no cost to using passive
acknowledgements, this is therefore a clear win.

Future improvements
There are many different ways that the current implementation of DSR could be
improved. Some of them are:

• Currently when a packet is sent along a route that contains a broken link, that
packet will be lost when it arrives at the broken link. It should be possible to
salvage such a packet if the node just before the broken link has in its route cache
an alternate route to the destination.

• Currently a route request can be answered only by the node being sought.
However, it should be possible for nodes to respond to route requests using
information from their route caches. If this were done, care would have to be
taken to avoid flooding the originator of the request with replies, but the DSR
specification lays out a possible method for handling this situation.

• The DSR specification describes an optional “flow state” extension to the
protocol that allows data packets to be sent without explicit DSR headers. This
can supposedly greatly reduce the overhead of DSR. This optimization would
require a significant amount of work.

Specification conformance
As mentioned earlier, there are a couple of areas in which my implementation of DSR
does not conform to the published specification. The first concerns link layer protocols
that sometimes have unidirectional links. The DSR specification requires elaborate logic
and data structures for handling the possibility of network links that only work in one
direction. Since unidirectional links are not an immediately important feature, I have
completely neglected this issue in implementing DSR.

The other area of nonconformance concerns networks that use DSR to route among some
of the nodes and other routing protocols to route among other nodes – for example, a
wireless network in which one of the nodes is also connected to the Internet. The logic
for handling these kinds of cases is not very complicated, but this seemed like a relatively
unimportant feature for simulation purposes, so I ignored it as well.

To the best of my knowledge, the DSR implementation conforms to the requirements of
the specification in every other respect.

Code overview
The following section provides a more detailed description of the data structures and
functions used to implement DSR. Nearly all of the DSR data structures and logic are
contained in the file jist/swans/route/RouteDsr.java. The classes describing the
layout of DSR headers and options are in jist/swans/route/RouteDsrMsg.java.

The code implementing the CBR test program can be found in driver/CBR.java. It is
not described in any further depth here, since it is simple enough that the code should be
self-explanatory.

Data Structures
The route cache has already been extensively discussed. It is a Hashtable mapping IP
addresses of destinations to LinkedLists of routes. Each route is an array of IP
addresses giving one possible path from this node to the destination. The LinkedLists
are kept sorted in order of increasing route length. Figure 6 on the next page is a
conceptual image of one entry in the route cache.

The send buffer is a LinkedList of BufferedPackets. Each entry contains a packet
waiting to be sent and the time at which it was inserted into the buffer. Entries in the
send buffer are evicted after a timeout of SEND_BUFFER_TIMEOUT.

The route request table serves two purposes: it limits the rate at which this node sends out
route requests, and it limits the rate at which this node replies to route requests. It is also
a Hashtable mapping destination IP addresses to table entries. Each table entry contains
the following information used to limit the rate at which requests are made: the TTL of
the last request sent to this destination, the time at which the last request was sent, the
number of requests for this destination sent since we last received a reply from it, and the
timeout before another route request can be made. Table entries also contain a
LinkedList of integer values indicating the identification values of the most recently
seen route requests coming from this destination; this is used to limit the rate of sending
route replies to this destination.

There is, as discussed before, no explicitly maintained maintenance buffer for packets
that use network- level acknowledgements. There is, however, a maintenance buffer for
packets awaiting passive acknowledgements. It is a Hashtable whose keys are
structures containing the following information: the source and destination addresses of
the buffered packet, the network protocol number, and the IP identification and
fragmentation offset fields. Each entry in the buffer hashes to a number which is the
value of the Segments Left field in the DSR header at the time the packet was buffered.
All of these data are necessary to determine if an overheard packet can be taken as a
passive acknowledgement of a previously transmitted packet.

The gratuitous route reply table is a HashSet containing pairs of IP addresses: these are
the originator and last-hop IP addresses of packets that have recently triggered gratuitous
route replies. Entries in the gratuitous route reply are evicted after a timeout of
GRAT_REPLY_HOLDOFF.

Also, a small HashSet is maintained that holds the values of the outstanding network-
level acknowledgements.

Figure 6 – Route cache

Control Flow
When a packet is overheard by DSR through the peek method, it is passed to a function
called ProcessOptions that handles each of the options in the DSR header in turn.
Every option is handled more or less independently of all the other options, and for each
option ProcessOptions hands off control to one or two methods that handle specific
option types. The overall control flow is summarized by the graph in Figure 7.

Route Request
Route requests are handed off to the HandleRequest method. HandleRequest first
checks the route request table to see if this request has been seen recently. If it has, it is
ignored; if it has not, its ID number is entered into the route request table.

Then HandleRequest examines the route request option to see if this is the node the
request is seeking. If it is, the SendRouteReply method is called to send a route reply to
the originator of the request. If it is not, the ForwardRequest method re-broadcasts the
request to every node within range.

Route Reply
Route replies are handed off to the HandleReply method. This method simply adds the
new route information into the route cache via the InsertRouteCache method. After
updating the route cache, InsertRouteCache checks the send buffer to see if any waiting
packets can be sent; if so, they are sent.

route A3

route cache
hash table

destination A

route A1

route A2

hash

IP IP IP IP

IP IP IP IP IP IP

IP IP IP

IP

IP IP

peek ProcessOptions
 SendRouteReply
 route request HandleRequest
 ForwardRequest

 route reply HandleReply InsertRouteCache

 ForwardPacket
 source route
 PerformRouteShortening

 ack request HandleAckRequest

 ack HandleAck

 route error HandleError

Figure 7 – Control Flow

Source Route
Given a source route option, ProcessOptions checks to see if this node is the intended
next-hop destination of this packet. If it is, then the ForwardPacket method is called to
forward the packet on to its next hop. Acknowledgements and retransmission work as
described above.

If this node is not the next-hop destination of the packet, PerformRouteShortening is
called to see if this node occurs later in the source route. If it does,
PerformRouteShortening calls SendGratuitousRouteReply to send a gratuitous route
reply, and the gratuitous route reply table is updated accordingly.

Acknowledgement Request
Acknowledgement requests are handed off to the HandleAckRequest method. This
method checks the packet’s source route to determine if this node is the intended next-
hop destination of the packet. If it is, an acknowledgement is returned to the previous-
hop node.

Acknowledgement
Acknowledgements are handed off to the HandleAck method. If this node is determined
to be the destination of the acknowledgement, then the acknowledgement’s ID value is
removed from the table of outstanding acks.

Route Error
Route errors are handled by the HandleError method. If the error is of type
NODE_UNREACHABLE (the only error that is currently supported), then the route cache is
updated to remove the link that apparently no longer works.

The only significant bit of logic not described above is the Transmit method. This is the
method that is called any time a packet has to be sent with acknowledgements and
retransmission: data packets, route replies, route errors, etc. The Transmit method calls
either TransmitWithNetworkAck or TransmitWithPassiveAck, as appropriate, and they
function according to the acknowledgement rules discussed previously.

Constants
The class RouteDsr contains various constants that can be tweaked to modify DSR’s
behavior. They are as follows:

BROADCAST_JITTER – Small amounts of jitter are added to packet retransmission
 timeouts. This constant is the maximum jitter that can be added.
SEND_BUFFER_TIMEOUT – the maximum amount of time a packet will be in the send
 buffer before being dropped.
REQUEST_PERIOD – the initial timeout before retransmitting an unanswered route request.
MAX_REQUEST_PERIOD – the maximum timeout ever used for retransmitting an
 unanswered route request.
MAX_MAINT_REXMT – the maximum number of times a packet will be retransmitted using
 network- level acknowledgements.
MAINT_PERIOD – the timeout before retransmitting a packet using network- level
 acknowledgements.
GRAT_REPLY_HOLDOFF – the minimum time between sending gratuitous route replies to a
 given node.
PASSIVE_ACK_TIMEOUT – the timeout before retransmitting a packet using passive
 acknowledgements.
TRY_PASSIVE_ACKS – the maximum number of times to try using passive
 acknowledgements before switching to network- level acknowledgements.
MAX_REQUEST_TABLE_IDS – the maximum size of a single entry in the route request table.

Using the simulation platform
My impressions as a user of JiST and SWANS may be of interest to the people who
created and maintain them, so I will say a few words about them.

JiST
JiST is largely transparent as a simulation platform, which is to say that 95% of the code I
wrote for JiST would have been exactly the same if I had been writing it for real. This

makes it in general very easy to use. The only difficulty comes when trying to do things
that are time-dependent, such as creating delays or timers. JiST’s timing functions are,
for me at least, a little counter-intuitive and awkward, but after some experience using
them I became fairly comfortable using them.

I will mention one enduring source of frustration for me, which is that using a debugger
on JiST is made very difficult by the class rewriting that goes on. You cannot step into or
out of an entity invocation as a normal function, nor can you obtain a meaningful stack
trace within an entity method. For the same reason, any exceptions thrown within an
entity method don’t get propagated up to the function that called it. I suppose, though,
that these effects are unavoidable given JiST’s architecture.

SWANS
I only dealt with a small portion of the entire SWANS infrastructure, so I can only
comment on the parts I used, namely the network, routing, and MAC layers. I never had
any problem understanding or using any of the interfaces, barring a known bug I
encountered in the 802.11 implementation, so overall SWANS performed admirably for
me.

There is, I should mention, sort of a conceptual mismatch between how SWANS
anticipates a routing protocol should work and how DSR actually works. SWANS seems
to expect the routing layer to be sort of an adjunct to the network layer, as in the diagram
on the left, whereas DSR is really a protocol layer unto itself, as on the right.

Furthermore, SWANS expects the routing protocol to use MAC addresses for its
addressing scheme, whereas DSR uses IP addresses. Neither of these issues, though, is
really critical, since I was still able to implement DSR without any serious problems.

Another issue with JiST/SWANS is the representation of network messages as Timeless
objects. Messages are not really “timeless” in DSR, since they change at every hop:
decrementing TTL, modifying source routes, etc. Because messages are Timeless objects
they can’t be modified, so this requires a lot of copying of message objects in order to
make small changes to them. I haven’t done any tests to measure what the actual costs of
the copying are, so I can’t say for sure if the use of Timeless objects here is a win or not.

 MAC

 Routing Routing

 MAC

 Network

 Transport Network

