
JiST – Java in Simulation Time

Virtual Machine-based Simulation

Rimon Barr
<barr@cs.cornell.edu>

Wireless Network Lab – Prof. Zygmunt J. Haas
Computer Science, Cornell University

25 March 2003
York University, Toronto

http://www.cs.cornell.edu/barr/repository/jist/

2JiST – Java in Simulation Time

motivation: wireless networks

• discrete event simulators are useful and needed
• in physics, biology, finance, meteorology, etc.

• e.g., wireless networks
• published ad hoc network simulations

• lack network size - ~500 nodes; or

• compromise detail - packet level; or

• curtail duration - few minutes; or

• are of sparse density - <10/km2; or

• reduce network traffic - few packets per node
i.e. limited simulation scalability

• wish to simulate
• a university campus: 30,000 students

• the U.S. military: 100-150,000 troops
• sensor networks, smart dust, Ubicomp

with Hundreds of thousands of cheap wireless
devices distributed across the environment

Simulation scalability is important

3JiST – Java in Simulation Time

what is a simulation?

• unstructured simulation: computers compute
• time structured: event-oriented vs. process-oriented

• discrete event simulator is a program that:
• encodes the simulation model
• stores the state of the simulated world
• performs events at discrete simulation times
• loops through a temporally ordered event queue
• works through simulation time as quickly as possible

• desirable properties of a simulator:
• correctness - valid simulation results
• efficiency - performance in terms of throughput and memory
• transparency - separate correctness from efficiency:

- write “simple” program in a standard language
- provide implicit optimization, concurrency,

distribution, portability, etc.

4JiST – Java in Simulation Time

how do we build simulators?

systems

• simulation kernels
• control scheduling, IPC, clock
• processes run in virtual time
• e.g. TimeWarp OS, Warped

C transparency D efficiency

• simulation libraries
• move functionality to user-space

for performance; monolithic prog.
• usually event-oriented
• e.g. Yansl, Compose, ns2

D transparency C efficiency

languages

• generic simulation languages
• introduce entities, messages

and simulation time semantics
• event and state constraints

allow optimization
• both event and process oriented
• e.g. Simula, Parsec/GloMoSim

• application-specific languages
• e.g. Apostle, TeD

´ transparency ´ efficiency

CD new language

virtual machines

5JiST – Java in Simulation Time

the jist approach

• JiST – Java in Simulation Time
• converts a virtual machine into a simulation platform
• no new language, no new library, no new runtime
• merges modern language and simulation semantics

• combines systems-based and languages-based approaches
• result: virtual machine-based simulation

6JiST – Java in Simulation Time

system architecture

1. Compile simulation with standard Java compiler
2. Run simulation within JiST (within Java); simulation classes are

dynamically rewritten to introduce simulation time semantics:
• extend the Java object model and execution model
• instructions take zero (simulation) time

• time explicitly advanced by the program: sleep(time)
• progress of time is dependent on program progress

3. Rewritten program interacts with simulation kernel

7JiST – Java in Simulation Time

jist object model

• program state contained in objects
• objects contained in entities

• think of an entity as a simulation component
• an entity is any class tagged with the Entity interface
• each entity runs at its own simulation time
• as with objects, entities do not share state
• akin to a JKernel process in spirit, but without the threads!

8JiST – Java in Simulation Time

jist execution model

• entity methods are an event interface
• simulation time invocation
• non-blocking; invoked at caller entity time; no continuation
• like co-routines, but scheduled in simulation time

• entity references replaced with separators
• event channels; act as state-time boundary
• demarcate a TimeWarp-like process, but at finer granularity

9JiST – Java in Simulation Time

a basic example

• the “hello world” of event simulations

• demo!

class HelloWorld implements JistAPI.Entity
{
public void hello()
{

JistAPI.sleep(1);
hello();
System.out.println("hello world, " +

"time=" + JistAPI.getTime());
}

}

hello world, time=1
hello world, time=2
hello world, time=3
etc.

Stack overflow @hello
JiSTJava

*

10JiST – Java in Simulation Time

jist api

• JistAPI class is the JiST kernel system call interface
• permits standard Java compilation and execution

// used in hello example
interface Entity - tag object as entity
long getTime() - return simulation time
void sleep(long ticks) - advance simulation time

// others, to be introduced shortly
interface Timeless - tag object as timeless
interface Proxiable - tag object as proxiable
Entity proxy(target, intface) - create proxy entity
class Continuation ext. Error – tag method as blocking
void run(type,name,args,...) - run program or script
void runAt(Runnable r) - schedule procedure
void endAt(long time) - end simulation
Channel createChannel() - sim. time CSP Channel
void installRewrite(rewriter) – install transformation
EntityRef THIS - this entity reference
EntityRef ref(Entity e) - get entity reference
// ... and few more

*

11JiST – Java in Simulation Time

jist micro-benchmark: event throughput

5x10^6 events time (sec) vs. reference vs. JiST
reference 0.74 0.76x
JiST 0.97 1.31x
Parsec 1.91 2.59x 1.97x
ns2-C 3.26 4.42x 3.36x
GloMoSim 9.54 12.93x 9.84x
ns2-Tcl 76.56 103.81x 78.97x

12JiST – Java in Simulation Time

jist micro-benchmark: memory overhead

memory per entity per event 10K nodes sim.
JiST 36 B 36 B 21 MB
GloMoSim 36 B 64 B 35 MB
ns2 * 544 B 40 B 74 MB
Parsec 28536 B 64 B 2885 MB

13JiST – Java in Simulation Time

SWANS

• Scalable Wireless Ad hoc Network Simulator
• similar functionality to ns2 and GloMoSim, but...
• runs standard Java network applications over simulated networks
• can simulate networks of 1,000,000 nodes

sequentially, on a single commodity uni-processor
• runs on top of JiST; SWANS is a JiST application
• uses hierarchical binning for efficient propagation
• component-based architecture written in Java App

SWANS

JiST

Java

si
m

.
st

ac
k

fil
es

cl
as

se
s

lin
es

se
m

i

JiST 29 113 14057 3502
SWANS 85 220 28617 6536

Other 32 80 6939 2509
146 413 49613 12547

14JiST – Java in Simulation Time

existing wireless simulators

GloMoSim
• implemented in Parsec, a

custom C-like language
• implements “node aggregation,”

to conserve memory
• shown ~10,000 nodes on NUMA

machine (SPARC 1000, est. $300k)

custom-made simulators
• fast, specialized computation
• lack sophisticated execution and

also credibility

ns2 is the gold standard
• written in C++ with Tcl bindings
• created for TCP simulation,

modified for wireless networks
• processor and memory intensive
• sequential; max. ~500 nodes
• recently “fixed” for ~5000 nodes

OpNet – popular commercial option
• good modeling capabilities
• poor scalability

sequential

parallel

PDNS – parallel distributed ns2
• event loop uses RTI-KIT
• uses fast inter-connect to

distribute memory requirements
• shown ~100,000 nodes

SWAN
• parallelized and distributed using

the DaSSF framework
• similar capabilities to GloMoSim
• shown ~100,000 nodes

rule of thumb: extra 10x in scale,
using at least 10x hardware and cost

15JiST – Java in Simulation Time

function implementation
application - heartbeat ;

any Java network application
transport - UDP ; TCP [Tamtoro]
network - IPv4
routing - ZRP ; DSR [Viglietta]; AODV [Lin]

link - 802.11b ; naïve ; wired
placement - random ; input file

mobility - static; random waypoint ; input file
interference - independent , ns2;

additive , GloMoSim
fading - zero ; Raleigh ; Rician

pathloss - free-space ; two-ray
propagation

algorithm
- linear scan , ns2;

flat binning , GloMoSim;
hierarchical binning

SWANS components

16JiST – Java in Simulation Time

SWANS performance

• simulation configuration
• application - heartbeat neighbor discovery
• field - 5x5km2; free-space path loss; zero fading
• mobility - random waypoint: v=2-5m, p=10s
• radio - additive noise; standard power, gain, etc.
• stack - 802.11b, IPv4, UDP

17JiST – Java in Simulation Time

SWANS performance

t=15m
nodes time memory time memory time memory time memory

500 7136.3 s 58761 KB 81.6 s 5759 KB 53.5 s 700 KB 43.1 s 1101 KB
5000 6191.4 s 27570 KB 3249.6 s 4887 KB 433.0 s 5284 KB

50000 47717 KB 4377.0 s 49262 KB

ns2 GloMoSim SWANS SWANS-hier

18JiST – Java in Simulation Time

SWANS performance

t=2m
nodes 10,000 100,000 1 million per node

initial memory 13 MB 100 MB 1000 MB 1.0 KB
avg. memory 45 MB 160 MB 1200 MB 1.2 KB

time 2 m 25 m 5.5 h 20 ms

SWANS-hier

19JiST – Java in Simulation Time

performance summary

• SWANS scalability
• can simulate million node wireless networks
• hierarchical binning allows linear scaling with network size

• SWANS is a JiST application
• a simulation program written using the “JiST approach”

• scalability depends on:
• time – efficient simulation event processing
• space – efficient simulation state encoding

20JiST – Java in Simulation Time

benefits of the jist approach

• more than just performance…
• application-oriented benefits

• type safety source and target statically checked
• event types not required (implicit)
• event structures not required (implicit)
• debugging dispatch source location and state available

• language-oriented benefits
• Java standard language, compiler, runtime
• garbage collection cleaner code, memory savings
• reflection script-based simulation configuration
• safety fine grained isolation
• robustness no memory leaks, no crashes

• system-oriented benefits
• IPC no context switch, no serialization, zero-copy
• Java kernel cross-layer optimization
• rewriting no source-code access required
• distribution provides a single system image abstraction
• concurrency model supports parallel and speculative execution

• hardware-oriented benefits
• cost COTS hardware and clusters
• portability runs on everything

21JiST – Java in Simulation Time

rewriter

• rewriter properties
• dynamic class loader
• no source code access required
• operates on application packages, not system classes
• uses Apache Byte Code Engineering Library (BCEL)
• allows orthogonal additions, transformations and optimizations

• rewriting phases
• application-specific rewrites
• verification
• add entity self reference
• intercept entity state access
• add method stub fields
• intercept entity invocations
• modify entity creation
• modify entity references
• modify typed instructions
• continuable analysis
• continuation transformation
• translate JiST API calls

22JiST – Java in Simulation Time

zero-copy semantics

• timeless object: a temporally stable object
• inferred statically as open-world immutable
• or tagged explicitly with the Timeless interface

• benefits
• pass-by-reference saves memory copy

• zero-copy semantics for inter-entity communication

• saves memory for common shared objects
• e.g. broadcast network packets

• rewrite new of common types to hashcons

23JiST – Java in Simulation Time

configurability

• configurability is essential for simulators
1. source level reuse; recompilation
2. configuration files read by driver program
3. driver program is a scripting language engine

• support for multiple scripting languages by reflection
• no additional code
• no memory overhead
• no performance hit
• Bsh - scripted Java

Jython - Python
• Smalltalk, Tcl, Ruby,

Scheme and JavaScript

24JiST – Java in Simulation Time

• using entity method invocations…
• one can easily write event-driven entities.
• what about process-oriented simulation?

• blocking events
• any entity method that “throws” a Continuation exception
• event processing frozen at invocation
• continues after call event

completes, at some later
simulation time

• benefits
• no explicit process
• blocking and non-blocking coexist
• akin to simulation time threading
• can build simulated network sockets
• can run standard applications over

these simulated sockets

simulations using real applications

*

25JiST – Java in Simulation Time

capturing continuations

• mark entity method as blocking: throws Continuation
• saving and restoring the stack is non-trivial in Java!

26JiST – Java in Simulation Time

simulation time concurrency

using continuations…
• simulation time Thread

• cooperative concurrency
• can also support pre-emptive, but not necessary

• simulation time concurrency primitives:
• CSP Channel: JistAPI.createChannel()
• locks, semaphores, barriers, monitors, FIFOs, …

27JiST – Java in Simulation Time

rewriter flexibility

• simulation time transformation
• extend Java object model with entities
• extend Java execution model with events
• language-based simulation kernel

• extensions to the model
• timeless objects: pass-by-reference to avoid copy, saves memory
• reflection: scripting, simulation configuration, tracing
• tight event coupling: cross-layer optimization, debugging
• proxy entities: interface-based entity definition
• blocking events: call and callback, CPS transformation, standard applications
• simulation time concurrency: Threads, Channels and other synch. primitives
• distribution: location independence of entities, single system image abstraction
• parallelism: concurrent and speculative execution
• orthogonal additions, transformations and optimizations

• platform for simulation research
• e.g. reverse computations in optimistic simulation [Carothers ’99]
• e.g. stack-less process oriented simulation [Booth ’97]

28JiST – Java in Simulation Time

summary

• JiST – Java in Simulation Time

• converts virtual machine into simulation platform
• merges systems and language-based approaches

• runs SWANS: Scalable Wireless Ad hoc Network Simulator

• efficient: both in terms of throughput and memory
• flexible: timeless objects, reflection-based scripting,

tight event coupling, proxy entities, continuations and
blocking methods, simulation time concurrency,
distribution, concurrency … serve as a research platform

JiST – Java in Simulation Time

Virtual Machine-based Simulation

THANK YOU.

http://www.cs.cornell.edu/barr/repository/jist/

30JiST – Java in Simulation Time

simulation time

• actual time
• standard Java program execution semantics
• progress of program independent of time

• real time
• need stronger guarantees on progress
• progress of program made dependent on time

• simulation time
• progress of time is dependent on program progress

• instructions take zero (simulation) time

• time explicitly advanced by the program: sleep(time)
• simulation event loop embedded in virtual machine
• rewriter introduces simulation time semantics by

• extending the Java object model
• extending the Java execution model

31JiST – Java in Simulation Time

JiST features in SWANS

• SWANS is a JiST application

• entity invocation tracking time
no context switching; zero-copy; cross-layer optimizations;
type-safety; implicit event structures and types

• timeless objects packets
saves memory; simplifies memory management

• proxy entities network stack
restricts communication pattern; simplifies development

• reflection script-based configuration
no memory or performance hit; no additional code

• continuations socket implementations
run standard Java network applications over simulated network

32JiST – Java in Simulation Time

tight event coupling

• tight coupling of event dispatch and delivery
provides numerous benefits:

• type safety source and target of event statically
verified by compiler

• event typing not required; events automatically
type-cast as they are dequeued

• event structures not required; event parameters
automatically marshaled

• debugging event dispatch location and state
are available

• execution transparently allows for parallel,
optimistic and distributed execution

33JiST – Java in Simulation Time

distribution and concurrency

• parallelism multiple controllers

• distribution separators allow migration and
provide location independence

• optimism check-pointing implicitly supported

34JiST – Java in Simulation Time

proxy entities

• proxy entities relay events to a target
• possible targets: regular object, proxiable object, entity

• proxiable: any object tagged with Proxiable interface

• benefits
• equivalent performance: JistAPI.proxy(target,intfce)
• interface-based: does not interfere with object hierarchy
• mix simulation time invocations with regular invocations
• provides a capability-like isolation for entities

*

35JiST – Java in Simulation Time

• manually need to box Java primitive types
• tail invocations not properly detected
• need API for type-safe stack access
• exceptions are very expensive

java deficiencies

36JiST – Java in Simulation Time

hierarchical binning

• simulating signal propagation
• critical to performance and scalability
• find radios within a given radius
• prior approaches

• linear scan ns2
• flat binning GloMoSim, ns2’ (MSWiM '03)
• function caching SWiMNet (WN ’01), ns2’ (WSC '03)

• hierarchical binning
• location update: amortized expected constant time
• neighborhood search: time linear in receivers, O(result set)
• amortized expected asymptotically optimal time

37JiST – Java in Simulation Time

jist api

*

38JiST – Java in Simulation Time

example: hello world

*

39JiST – Java in Simulation Time

example: scripts

BeanShell – scripted Java

Jython – Python

*

40JiST – Java in Simulation Time

example: blocking methods

*

41JiST – Java in Simulation Time

rewriter overhead

