
Thesis defense:

JiST – Java in Simulation Time

An efficient, unifying approach
to simulation using virtual machines

Rimon Barr
<barr@cs.cornell.edu>

Wireless Network Laboratory

Committee: Prof. Zygmunt Haas (advisor),
Dr. Robbert van Renesse, Prof. Ken Birman,

and Prof. Alan McAdams.

3 May 2004

http://www.cs.cornell.edu/barr/repository/jist/

2Virtual machine-based simulation

motivation: simulation

• cost per MIPS declining
• e.g. Pentium Xeon:
• ~10,000 MIPS @ ~$200

• emphasis on computation
• vs. analytical methods
• vs. empirical methods

• simulators are useful and needed
examples –
• physics: electron tunneling, star collisions, particle dynamics, …
• biology: protein folding, disease spread, genetic drift, …
• earth science: weather prediction, tectonic modeling, water quality, …
• finance: portfolio pricing, statistical arbitrage, risk analysis, …
• operations: optimize workflow, supply chain, inventory, pricing, …
• CS: performance analysis of networks, processors, heuristics, …
• … take any subject X, and google “X simulation”

3Virtual machine-based simulation

motivation: simulation scalability

• e.g., wireless networks
• published ad hoc network simulations

• lack network size - ~500 nodes; or
• compromise detail - packet level; or
• curtail duration - few minutes; or
• are of sparse density - <10/km2

i.e. limited simulation scalability [Riley02]

• wish to simulate
• a university campus: 30,000 students
• the U.S. military: 100-150,000 troops
• sensor networks, smart dust, Ubicomp

with hundreds of thousands of
cheap wireless devices distributed across
the environment

Simulation scalability is important

4Virtual machine-based simulation

what is a simulation?

• unstructured simulation: computers compute
• time structured: event-oriented vs. process-oriented

• discrete event simulator is a program that:
• encodes the simulation model
• stores the state of the simulated world
• performs events at discrete simulation times
• loops through a temporally ordered event queue
• works through simulation time as quickly as possible

• desirable properties of a simulator:

• correctness - valid simulation results
• efficiency - performance in terms of throughput and memory
• transparency - separate correctness from efficiency:

- write “simple” program in a standard language
- provide implicit optimization, concurrency,

distribution, portability, etc.

5Virtual machine-based simulation

how do we build simulators?

systems

• simulation kernels
• control scheduling, IPC, clock
• processes run in virtual time
• e.g. TimeWarp OS [Jefferson87],

Warped [Martin96]

C transparency D efficiency

• simulation libraries
• move functionality to user-space

for performance; monolithic prog.
• usually event-oriented
• e.g. Yansl [Joines94],

Compose [Martin95], ns2 [McCanne95]

D transparency C efficiency

languages

• generic simulation languages
• introduce entities, messages and

simulation time semantics
• event and state constraints allow

optimization
• both event and process oriented
• e.g. Simula [Dahl66], Parsec

[Bagrodia98] / GloMoSim [Zeng98]

• application-specific languages
• e.g. Apostle [Bruce97],

TeD [Perumalla98]

´ transparency ´ efficiency

CD new language

virtual machines

6Virtual machine-based simulation

virtual machine-based simulation

• Thesis statement:

• JiST – Java in Simulation Time
• converts a virtual machine into a simulation platform
• no new language, no new library, no new runtime
• merges modern language and simulation semantics

• combines systems-based and languages-based approaches
• result: virtual machine-based simulation

A virtual machine-based simulator benefits from the advantages
of both the traditional systems and language-based designs by
leveraging standard compilers and language runtimes as well as
ensuring efficient simulation execution through transparent
cross-cutting program transformations and optimizations.

7Virtual machine-based simulation

system architecture

1. Compile simulation with standard Java compiler
2. Run simulation within JiST (within Java); simulation classes are

dynamically rewritten to introduce simulation time semantics:
• extend the Java object model and execution model
• instructions take zero (simulation) time

• time explicitly advanced by the program: sleep(time)
• progress of time is dependent on program progress

3. Rewritten program interacts with simulation kernel

8Virtual machine-based simulation

jist object model

• program state contained in objects
• objects contained in entities

• think of an entity as a simulation component
• an entity is any class tagged with the Entity interface
• each entity runs at its own simulation time
• as with objects, entities do not share state
• akin to JKernel [Hawblitzel98] process in spirit, without the threads!

9Virtual machine-based simulation

jist execution model

• entity methods are an event interface
• simulation time invocation
• non-blocking; invoked at caller entity time; no continuation
• like co-routines, but scheduled in simulation time

• entity references replaced with separators
• event channels; act as state-time boundary
• demarcate a TimeWarp-like process, but at finer granularity

10Virtual machine-based simulation

a basic example

• the “hello world” of event simulations

• demo!

class HelloWorld implements JistAPI.Entity
{
public void hello()
{

JistAPI.sleep(1);
hello();
System.out.println("hello world, " +

"time=" + JistAPI.getTime());
}

}

hello world, time=1
hello world, time=2
hello world, time=3
etc.

Stack overflow @hello
JiSTJava

11Virtual machine-based simulation

jist micro-benchmark: event throughput

5x10^6 events time (sec) vs. reference vs. JiST
reference 0.74 0.76x
JiST 0.97 1.31x
Parsec 1.91 2.59x 1.97x
ns2-C 3.26 4.42x 3.36x
GloMoSim 9.54 12.93x 9.84x
ns2-Tcl 76.56 103.81x 78.97x

12Virtual machine-based simulation

jist micro-benchmark: memory overhead

memory per entity per event 10K nodes sim.
JiST 36 B 36 B 21 MB
GloMoSim 36 B 64 B 35 MB
ns2 * 544 B 40 B 74 MB
Parsec 28536 B 64 B 2885 MB

13Virtual machine-based simulation

SWANS

• Scalable Wireless Ad hoc Network Simulator
• similar functionality to ns2 [McCanne95] and GloMoSim [Zeng98], but...
• runs standard Java network applications over simulated networks
• can simulate networks of 1,000,000 nodes

sequentially, on a single commodity uni-processor
• runs on top of JiST; SWANS is a JiST application
• uses hierarchical binning for efficient propagation
• component-based architecture written in Java App

SWANS

JiST

Java

si
m

.
st

ac
k

fil
es

cl
as

se
s

lin
es

se
m

i

JiST 29 117 14256 3530
SWANS 85 220 29157 6586

Other 32 80 7204 2525
146 417 50617 12641

14Virtual machine-based simulation

SWANS performance

t=15m
nodes time memory time memory time memory time memory

500 7136.3 s 58761 KB 81.6 s 5759 KB 53.5 s 700 KB 43.1 s 1101 KB
5000 6191.4 s 27570 KB 3249.6 s 4887 KB 433.0 s 5284 KB

50000 47717 KB 4377.0 s 49262 KB

ns2 GloMoSim SWANS SWANS-hier

15Virtual machine-based simulation

SWANS performance

t=2m
nodes 10,000 100,000 1 million per node

initial memory 13 MB 100 MB 1000 MB 1.0 KB
avg. memory 45 MB 160 MB 1200 MB 1.2 KB

time 2 m 25 m 5.5 h 20 ms

SWANS-hier NDP simulation

16Virtual machine-based simulation

SWANS performance

t=2m
nodes 10,000 100,000 500,000 per node

avg. memory 72 MB 367 MB 1630 MB 3.3 KB
time 4 m 41 m 290 m 35 ms

SWANS-hier ZRP simulation

Recent network research results:

• Analyzed cost of route discovery in
large ad hoc networks.

• Showed that the bordercast protocol
performance is independent of node
density, proven to be optimal.

• Bordercast can improve
performance of many existing
flooding-based routing protocols.

• Optimal bordercast performance at
zone radii = 2 hops.

• Cost of zone maintenance bounded,
proportional to network mobility.

• Aggregating link state zone updates
substantially reduces maintenance
overhead.

17Virtual machine-based simulation

benefits of the jist approach

more than just performance…
• application-oriented benefits

• type safety source and target statically checked
• event types not required (implicit)
• event structures not required (implicit)
• debugging dispatch source location and state available

• language-oriented benefits
• Java standard language, compiler, runtime
• garbage collection cleaner code, memory savings
• reflection script-based simulation configuration
• safety fine grained isolation
• robustness no memory leaks, no crashes

• system-oriented benefits
• IPC no context switch, no serialization, zero-copy
• Java kernel cross-layer optimization
• rewriting no source-code access required,

cross-cutting program transformations and optimizations
• distribution provides a single system image abstraction
• concurrency model supports parallel and speculative execution

• hardware-oriented benefits
• cost COTS hardware and clusters
• portability runs on everything

18Virtual machine-based simulation

zero-copy semantics

• timeless object: a temporally stable object
• inferred statically as open-world immutable
• or tagged explicitly with the Timeless interface

• benefits
• pass-by-reference saves memory copy

• zero-copy semantics for inter-entity communication

• saves memory for common shared objects
• e.g. broadcast network packets

• rewrite new of common types to hashcons

19Virtual machine-based simulation

configurability

• configurability is essential for simulators
1. source level reuse; recompilation
2. configuration files read by driver program
3. driver program is a scripting language engine

• support for multiple scripting languages by reflection
• no additional code
• no memory overhead
• no performance hit
• Bsh - scripted Java

Jython - Python
• Smalltalk, Tcl, Ruby,

Scheme and JavaScript

20Virtual machine-based simulation

• using entity method invocations…
• one can easily write event-driven entities.
• what about process-oriented simulation?

• blocking events
• any entity method that “throws” a Continuation exception
• event processing frozen at invocation
• continues after call event

completes, at some later
simulation time

• benefits
• no explicit process
• blocking and non-blocking coexist
• akin to simulation time threading
• can build simulated network sockets
• can run standard applications over

these simulated sockets

process-oriented simulation

21Virtual machine-based simulation

capturing continuations

• mark entity method as blocking: throws Continuation
• saving and restoring the stack is non-trivial in Java!

22Virtual machine-based simulation

simulation time concurrency

using continuations…
• simulation time Thread

• cooperative concurrency
• can also support pre-emptive, but not necessary

• simulation time concurrency primitives:
• CSP Channel [Hoare78]: JistAPI.createChannel()
• locks, semaphores, barriers, monitors, FIFOs, …

23Virtual machine-based simulation

rewriter flexibility

• simulation time transformation
• extend Java object model with entities
• extend Java execution model with events
• language-based simulation kernel

• extensions to the model
• timeless objects: pass-by-reference to avoid copy, saves memory
• reflection: scripting, simulation configuration, tracing
• tight event coupling: cross-layer optimization, debugging
• proxy entities: interface-based entity definition
• blocking events: call and callback, CPS transformation, standard applications
• simulation time concurrency: Threads, Channels and other synch. primitives
• distribution: location independence of entities, single system image abstraction
• parallelism: concurrent and speculative execution
• orthogonal additions, transformations and optimizations

• platform for simulation research
• e.g. reverse computations in optimistic simulation [Carothers99]
• e.g. stack-less process oriented simulation [Booth97]

24Virtual machine-based simulation

summary

• JiST – Java in Simulation Time

• prototype virtual machine-based simulation platform
• merges systems and language-based approaches

• runs SWANS: Scalable Wireless Ad hoc Network Simulator

• efficient: both in terms of throughput and memory
• flexible: timeless objects, reflection-based scripting,

tight event coupling, proxy entities, continuations and
blocking methods, simulation time concurrency,
distribution, concurrency … serve as a research platform

Thesis defense:

JiST – Java in Simulation Time

An efficient, unifying approach
to simulation using virtual machines

THANK YOU.

http://www.cs.cornell.edu/barr/repository/jist/

