
AN EFFICIENT, UNIFYING APPROACH TO

SIMULATION USING VIRTUAL MACHINES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Rimon Barr

May 2004

c© 2004 Rimon Barr

ALL RIGHTS RESERVED

AN EFFICIENT, UNIFYING APPROACH TO SIMULATION USING

VIRTUAL MACHINES

Rimon Barr, Ph.D.

Cornell University 2004

Due to their popularity and widespread utility, discrete event simulators have

been the subject of much research. Systems researchers have built many types

of simulation kernels and libraries, while the languages community has designed

numerous languages specifically for simulation. In this dissertation, I propose a

new approach for constructing simulators that leverages virtual machines and thus

combines the advantages of both the traditional systems-based and language-based

approaches to simulator construction.

I present JiST, a Java-based simulation engine that exemplifies virtual machine-

based simulation. JiST executes discrete event simulations by embedding simula-

tion time semantics directly into the Java execution model. The system provides

all the standard benefits that the modern Java runtime affords. In addition, JiST

is efficient, out-performing existing highly optimized simulation runtimes, and in-

herently flexible, capable of transparently performing cross-cutting program trans-

formations and optimizations at the bytecode level. I illustrate the practicality of

the JiST approach through the construction of SWANS, a scalable wireless ad hoc

network simulator that can simulate million node wireless networks, which is more

than an order of magnitude in scale over what existing simulators can achieve on

equivalent hardware and at the same level of detail.

BIOGRAPHICAL SKETCH

Born on August 17, 1976, in Tel Aviv, Rimon Barr lived in Israel for almost five

years, crawling around, eating well, and loving life. He grew up in Johannesburg,

South Africa, enjoying soccer, swimming, chess, karate, and reading about any-

thing and everything possible. He fondly remembers his high school, King David

Linksfield, family trips to the wilderness, Sunday braais (barbecue in Afrikaans),

and the family dogs: Chumi, Shooki, Cookie, Pitsi and Sheba. At the age of 16,

his family moved to Toronto, Canada, where he promptly finished up his school-

ing. He then attended the University of Toronto to study Computer Science and

Biology, specializing in Immunology. From the morning subways rides that were

mostly uneventful to exciting research projects and competitions, from the litany

of lectures to the teaching and other part-time work, and from the scholarly to

the social and personal, his undergraduate days were engaging and filled to the

brim. The summers were exploited to go traveling and to gain industry experi-

ence at places such as Microsoft and IBM. He graduated in 1998 with an Honors

B.Sc., magna cum laude. Accepted to the doctoral program at Cornell, he came to

Ithaca, NY, the smallest town he has ever lived in. Over the following six years, he

became active in a number of community organizations, started to play the guitar,

and also completed an MBA degree in 2002. In May of 2004, he will graduate with

a Ph.D. in Computer Science, walking for the third time in as many years. He

intends to move to New York City shortly thereafter and begin working at Google.

The best is yet to come.

iii

To my parents, Aiala and Zeev, and my sister, Iris.

To my friends. To the ongoing pursuit of progress.

iv

ACKNOWLEDGEMENTS

My graduate work has been a humbling, fulfilling, and educational journey:

educational, because I have accumulated much knowledge and experience along

the way; fulfilling, because I have gathered so many cherished memories and happy

moments that have enriched my life; and humbling, because I realize that this

accomplishment is as much a product of those around me as of my own efforts.

I have so many people to thank for believing in me, for expecting no less of me

than the limits of my abilities, for caring about me, for trusting me, for lighting

my path, for contributing perspective and wisdom, for giving me strength when

my determination faltered, for sharing my load, and for helping me in ways that I

may not yet completely comprehend, nor appreciate. Thank you; thank you, all,

very much.

I have an incredible family. My mother and father, Aiala and Zeev, have given

me only the very best in every respect. My sister, Iris, and I have grown together

and are the closest of friends. I simply do not possess the words to express how

immensely fortunate and blessed I feel for this. My gratitude and my love for them

is beyond description.

I am thankful for my close friends, some of whom are scattered, unfortunately,

across the United States, in Canada, in Israel, and elsewhere. They brighten my life

and are forged into my life story, as am I into theirs. They all know who they are.

Here, at Cornell, I have befriended some wonderful, kind people, who have been

integral to my Ithaca experience: Tamara and Josh Goldfarb, Rina Kreitman, Ben

Atkin, Adi Bozdog, Tash Katsnelson, Drorit Cohen, Siggi Cherem, Oren Kurland,

Rivka Shoulson, Alin Dobra, Oren Harel, Boaz Nachshon, April Scheck, Dayana

Habib, Eli and Regina Barzilay, Rabbis Eli Silberstein, Ed Rosenthal and Avi

v

Scharf, Leron Thumim, Josh Rosenthal, Nechama Poyurs, Paul Ampadu, Steve

Fisher, and Ranveer Chandra. To those few that I have, no doubt, been unable

to recall at this moment, I apologize. I sometimes catch myself searching for my

eye-glasses when they are, in fact, sitting on my nose. The people who I have

regretfully not mentioned would be those that, like my eye-glasses, are the most

unobtrusively integral to my daily life. I thank you.

I am immensely grateful to my doctoral committee for shepherding me through

the ups and downs of this degree. I wish to thank my adviser, Zygmunt Haas for his

invaluable guidance and ongoing input into this work, and for his trust in me, his

kindness, and his humor. I am greatly indebted to Alan McAdams for the wisdom

and experience he shared with me and, most of all, for his friendship. I thank

Robbert van Renesse for his kindness and sincerity towards me, and for inspiring

me with his incredible creativity and talent. I thank Ken Birman for believing in

me, for encouraging and helping me, and for inspiring me with his sharp insight

and keen judgment. These individuals exemplify many of the ideals of academia,

and I am honored to have had the opportunity to interact with them. Finally, I

wish to thank all of my teachers, of which there have been so many, both during

my university years and before, both in an official capacity and not, for the gifts

that they have bestowed upon me.

vi

TABLE OF CONTENTS

1 Introduction 1
1.1 Existing approaches to simulation construction 1
1.2 Virtual machine-based simulation 4
1.3 Thesis statement . 6
1.4 Contributions . 6
1.5 Outline . 7
1.6 Software and documentation . 7

2 System Overview and Design 9
2.1 Architecture . 9
2.2 Simulation time execution . 11
2.3 Object model and execution semantics 13
2.4 Simulation kernel interface . 18
2.5 Hello World! . 20
2.6 Rewriter . 23
2.7 Simulation kernel . 25
2.8 Summary . 26

3 Flexibility of Virtual Machine-based Simulation 27
3.1 Zero-copy semantics . 27
3.2 Reflection-based configuration . 30
3.3 Tight event coupling . 34
3.4 Interface-based entities . 37
3.5 Blocking invocation semantics . 41
3.6 Simulation time concurrency . 49
3.7 Parallel, optimistic, and distributed execution 50
3.8 Simulation research platform . 53
3.9 Summary . 54

4 Building a Scalable Network Simulator 57
4.1 Background . 57
4.2 Design highlights . 59
4.3 Embedding Java-based network applications 63
4.4 Efficient signal propagation using hierarchical binning 63
4.5 Summary . 67

5 JiST and SWANS Performance 69
5.1 Macro-benchmarks . 70
5.2 Event throughput . 75
5.3 Context switching . 78
5.4 Memory utilization . 80
5.5 Performance summary . 84

vii

5.6 Rewriting and annotation overhead 85
5.7 Language alternatives . 88
5.8 Summary . 92

6 Density Independent Route Discovery 93
6.1 Background . 93
6.2 Scalability limits . 96
6.3 Route discovery . 98
6.4 Optimal propagation . 99
6.5 Zones and bordercasting . 103
6.6 Zone maintenance . 108
6.7 Bordercast evaluation . 110
6.8 Conclusions . 121
6.9 Summary . 123

7 Related Work 124
7.1 Simulation languages . 124
7.2 Simulation libraries . 127
7.3 Simulation systems . 128
7.4 Languages and Java-related . 129
7.5 Network simulation . 130
7.6 Wireless ad hoc networking . 132

8 Conclusion 134
8.1 Summary . 134
8.2 Future work . 135

A The JiST API 139

B SWANS Components 142
B.1 Physical . 142
B.2 Link . 145
B.3 Network . 146
B.4 Routing . 147
B.5 Transport . 147
B.6 Application . 149
B.7 Common . 150

C Event Micro-benchmarks 152
C.1 JiST . 152
C.2 Parsec . 152
C.3 GloMoSim . 153
C.4 ns2-C . 154

Bibliography 156

viii

LIST OF TABLES

1.1 Trade-offs of different simulator construction approaches. 3

2.1 The relationship between program progress and time under differ-
ent execution models . 12

3.1 Benefits of encoding simulation events as entity method invocations. 36

5.1 SWANS time and memory performance running NDP simulations . 74
5.2 Time and memory to run ZRP simulations in SWANS. 76
5.3 Time to perform 5 million events 82
5.4 Per entity and per event memory overhead 82
5.5 Summary of design characteristics that bear most significantly on

simulation performance. 86
5.6 Code size metrics for the JiST and SWANS codebase. 86
5.7 Class size increases due to rewriter processing. 89
5.8 Counts of JiST API calls and annotations within SWANS codebase 89

6.1 Capabilities of various wireless technology options 100

ix

LIST OF FIGURES

2.1 The JiST system architecture. 10
2.2 Extending the Java object model. 16
2.3 The JiST kernel interface . 19
2.4 Hello World! simulation . 21

3.1 Timeless objects. 29
3.2 Reflection-based configuration . 32
3.3 Example BeanShell and Jython script-based simulation drivers. . . 33
3.4 Interface-based proxy entities . 38
3.5 An example illustrating the use of proxy entities. 40
3.6 Blocking invocation semantics . 42
3.7 Unrolling the Java stack. 42
3.8 An example illustrating the use of a blocking invocations. 45
3.9 CPS transformation on continuable program locations. 47
3.10 Simulation time CSP Channels. 52
3.11 Partitioning simulation entities among Controllers. 52

4.1 The SWANS component architecture. 60
4.2 Alternative spatial data structures for radio signal propagation. . . 65

5.1 SWANS significantly outperforms both ns2 and GloMoSim in sim-
ulations of the node discovery protocol. 72

5.2 SWANS can simulate larger network models due to its more efficient
use of memory. 73

5.3 SWANS scales to networks of 106 wireless NDP nodes. 73
5.4 SWANS scales to 500,000 ZRP nodes. 76
5.5 JiST event throughput . 79
5.6 JiST memory overhead . 81
5.7 Java-related overheads in the JiST event loop 90

6.1 Flooding query propagation protocol 100
6.2 Bordercast query propagation protocol 105
6.3 A bordercast in progress . 112
6.4 Unlike flooding, the bordercast cost of query propagation is inde-

pendent of the network density. 112
6.5 Increased zone radius improves bordercast performance, primarily

due to edge effects. 114
6.6 Discounting edge effects, bordercast cost is not significantly affected

by increased zone radius. 114
6.7 An example 800-node, R = 4 bordercast plot 115
6.8 Cost of zone maintenance increases dramatically with increased

density and zone radius. 117

x

6.9 Aggregated link state can be encoded efficiently to reduce average
size of update packets. 117

6.10 Comparing the two zone maintenance protocols shows that zone-
wide link update aggregation and efficient encoding is beneficial. . 120

6.11 Mobility increases the cost of zone maintenance. 120

xi

Chapter 1

Introduction
From physics to biology, from weather forecasting to predicting the performance

of a new processor design, and from estimating the expected value of an abstract

financial instrument to the modeling of fracture propagation in concrete dams,

people in many avenues of science and industry increasingly depend on software

simulations. Simulators are used to model various realistic phenomena and also

hypothetical scenarios that often cannot be satisfactorily expressed analytically

nor easily reproduced and observed empirically. Instead, discretized simulation

models are derived and then encoded as event-driven programs, wherein events are

processed in their casual order, updating the simulation program state according

to the given model and possibly scheduling more simulation events.

1.1 Existing approaches to simulation construction

Due to their popularity and widespread utility, discrete event simulators have been

the subject of much research [71, 36, 77, 37] directed at their efficient design and

execution. Systems researchers have built many types of simulation kernels and

libraries, spanning the gamut from the conservatively parallel to the aggressively

optimistic, and from the shared memory to the message passing paradigms. The

languages community has designed numerous languages specifically for simulation,

which codify event causality, execution semantics, and simulation state constraints,

simplify parallel simulation development, and permit important static and dynamic

optimizations.

1

2

Simulation kernels, including systems such as the seminal TimeWarp OS [54],

transparently create a convenient simulation time abstraction. By mimicking the

system call interface of a conventional operating system, one can run simulations

comprised of standard, unmodified programs. However, since the kernel controls

process scheduling, inter-process communication and the system clock, the kernel

can run its applications in simulation time. For example, an application sleep

request can be performed without delay, provided that causal relationships between

communicating processes are preserved. Moreover, the kernel can transparently

support concurrent execution of simulation applications and even speculative and

distributed execution. Thus, the process boundary provides much flexibility.

Unfortunately, the process boundary is also a source of inefficiency [16]. Sim-

ulation libraries, such as Compose [68] and others, trade away the transparency

afforded by process-level isolation in favor of increased efficiency. For example, by

combining the individual processes into a single simulation process, one can elim-

inate the process context-switching and marshaling overheads required for event

dispatch and thus increase simulation efficiency. However, various simulation func-

tions that existed within the kernel, such as message passing and scheduling, must

then be explicitly programmed in user-space. In essence, the simulation kernel and

its applications are merged into a single monolithic process that contains both the

simulation model as well as its own execution engine. This monolithic simulation

program is more complex and littered with simulation library calls and callbacks.

The library may also require certain coding practices and program structure that

are not explicitly enforced by the compiler. This level of detail not only encum-

bers efforts to transparently parallelize or distribute the simulator, it also impedes

possible high-level compiler optimizations and obscures simulation correctness.

3

Table 1.1: Trade-offs of different simulator construction approaches.

kernel library language JiST

transparent ++ ++ ++

efficient + + ++

standard ++ ++ ++

Simulation languages, such as Simula [30], Parsec [11] and many others, are

designed to simplify simulation development and to explicitly enforce the correct-

ness of monolithic simulation programs. Simulation languages often introduce ex-

ecution semantics that transparently allow for parallel and speculative execution,

without any program modification. Such languages often also introduce handy

constructs, such as messages and entities, that can be used to partition the appli-

cation state. Constraints on simulation state and on event causality are statically

enforced by the compiler, and they also permit important static and dynamic

optimizations. An interesting recent example of a language-based simulation op-

timization is that of reducing the overhead of speculative simulation execution

through the use of reverse computations [26]. However, despite these advantages,

simulation languages are domain-specific by definition and therefore suffer from

specialization. They usually lack modern features, such as type safety, reflection

and garbage collection, as well as portability. They also lag in terms of general-

purpose optimizations and implementation efficiency. These deficiencies only serve

to perpetuate the small user-base problem, but perhaps the most significant bar-

rier to adoption by the broader community is that programs need to be rewritten

in order to be simulated.

4

In summary, each of these three fundamental approaches to simulation con-

struction trades off a different desirable property, as shown in Table 1.1, where:

• standard means writing simulations in a conventional, popular program-

ming language, as opposed to a domain-specific language designed explicitly

for simulation;

• efficient denotes optimizing the simulation program statically and dynam-

ically by considering simulation state and event causality constraints in ad-

dition to general-purpose program optimizations; creating a simulation en-

gine that compares favorably with existing, highly optimized systems both

in terms of simulation throughput and memory consumption, and; possibly

distributing the simulation and executing it in parallel or speculatively across

the available computational resources to improve performance;

• and transparent implies the separation of efficiency from correctness; that

correct simulation programs can be automatically transformed to run ef-

ficiently without the insertion of simulation-specific library calls or other

manual program alterations. Correctness is an assumed pre-condition that

simulation programs must compute valid and useful results, regardless of how

they are constructed.

1.2 Virtual machine-based simulation

In this dissertation, I propose a new, unifying approach to building simulators,

which does not suffer this trade-off: to bring simulation semantics to a modern and

popular virtual machine-based language. Unlike prior simulator designs, virtual

machine-based simulation requires:

5

• neither a new simulation language – new languages, and especially domain-

specific ones, are rarely adopted by the broader community;

• nor a new simulation library – libraries frequently require developers to clut-

ter their code with simulation-specific library calls and impose unnatural

program structure to achieve performance;

• nor a new simulation system kernel or language runtime – custom kernels

and language runtimes are rarely as optimized, reliable, featured, or portable

as their generic counterparts.

Instead, JiST, which stands for Java in Simulation Time, embeds simulation

semantics into the standard Java language and its runtime, and transparently per-

forms important high-level simulation optimizations, resulting in an efficient dis-

crete event simulation platform. The three attributes of virtual machine-based

simulation – the first one in particular – highlight an important distinction be-

tween JiST and previous simulation system designs in that the simulation code

that runs atop JiST need not be written in a domain-specific language invented

specifically for writing simulations, nor need it be littered with special-purpose

system calls and call-backs to support runtime simulation functionality. Instead,

JiST transparently introduces simulation time execution semantics to simulation

programs written in plain Java and they are executed over an unmodified Java

virtual machine. In other words, JiST converts a virtual machine into a simulation

system that is flexible and efficient.

6

1.3 Thesis statement

Using the terminology just defined, I propose the following thesis:

A virtual machine-based simulator benefits from the advantages of both

the traditional systems and language-based designs by leveraging stan-

dard compilers and language runtimes as well as ensuring efficient sim-

ulation execution through transparent cross-cutting program transfor-

mations and optimizations.

1.4 Contributions

Thus, the primary contribution of this dissertation is virtual machine-based simu-

lation, a new, unifying approach to building simulators. I outline the rationale

for this new design and discuss its many benefits. I present the JiST proto-

type, a general-purpose Java-based simulation platform that embodies the vir-

tual machine-based simulator design. JiST embeds simulation execution seman-

tics directly into the Java virtual machine. The system provides all the standard

benefits that the modern Java runtime affords. In addition, JiST is efficient, out-

performing existing highly optimized simulation runtimes, and inherently flexible,

capable of transparently performing cross-cutting program transformations and

optimizations. I leverage this flexibility to introduce additional concepts into the

JiST model, including process-oriented simulation and simulation time concur-

rency primitives. In this dissertation, I also present SWANS, a wireless ad hoc

network simulator, built atop JiST, as a validation of the approach, and demon-

strate that SWANS can scale to very large wireless network simulations even on

7

commodity machines. Finally, I utilize SWANS to perform a scalable analysis of

the bordercast query propagation protocol.

1.5 Outline

The remainder of this dissertation is organized as follows:

Chapter 2 - introduces the fundamental ideas of virtual machine-based simulation.

Chapter 3 - continues the discussion with important extensions to the basic model

that either simplify development or improve performance.

Chapter 4 - presents SWANS, a wireless network simulator that leverages the JiST

design to achieve performance and scalability.

Chapter 5 - provides an evaluation of JiST and SWANS using various performance

and software engineering benchmarks.

Chapter 6 - is a SWANS-based study of the scalability properties of the bordercast

query propagation protocol.

Chapter 7 - discusses the body of prior and related work.

Chapter 8 - concludes with a short summary and possible future work.

1.6 Software and documentation

As of the time of this writing, the JiST and SWANS implementations (with com-

plete source code), as well as user guides and related presentations, are currently

available, for non-commercial academic use, on the World Wide Web at:

http://www.cs.cornell.edu/barr/repository/jist/

8

While this dissertation represents the current state of the project, it is ex-

pected (and hoped) that the project will continue to progress beyond its current

functionality. Possible future directions are discussed in section 8.2.

Chapter 2

System Overview and Design
As introduced in the previous chapter, JiST converts a virtual machine into a

simulation platform. This chapter outlines the basic system architecture, explains

what it means to execute a program in simulation time, and describes how JiST

supports the simulation time abstraction by extending the basic Java object model

and its execution semantics.

2.1 Architecture

The JiST system consists of four distinct components: a compiler, a language

runtime or virtual machine, a rewriter and a language-based simulation time kernel.

Figure 2.1 presents the JiST architecture: (1) a simulation is first compiled, then

(2) dynamically rewritten as it is loaded, and finally (3) executed by the virtual

machine with support from the language-based simulation time kernel.

A primary goal of JiST is to execute simulations using only a standard lan-

guage and runtime. Consequently, the compiler and runtime components of the

JiST system can be any standard Java compiler and virtual machine1, respectively.

Simulation time execution semantics are introduced by the two remaining system

components. The rewriter component of JiST is a dynamic class loader. It inter-

cepts all class load requests and subsequently verifies and modifies the requested

classes. These modified, rewritten classes now incorporate the embedded simula-

tion time operations, but they otherwise completely preserve the existing program

1JiST was built and tested with the Java 2 v1.4 JDK, the Sun javac and
IBM jikes compilers, and the Sun HotSpot and IBM JVMs on both the Linux
and Windows platforms.

9

10

�

�

�

�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

virtual
machine

kernel
simulation

rewriter
compiler
(javac)

2

3

1

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������

java source code

java bytecode modified classes

Simulations are (1) compiled, then (2) dynamically instrumented by the rewriter

and finally (3) executed. The compiler and virtual machine are standard Java

language components. Simulation time semantics are introduced by the rewriter

and are supported at runtime by the simulation time kernel.

Figure 2.1: The JiST system architecture.

11

logic. The program transformations occur once, at load time, and do not incur

rewriting overhead during execution. The rewriter also does not require source-

code access, since this is a bytecode to bytecode transformation. At runtime, the

modified simulation classes interact with the JiST simulation time kernel through

the various injected or modified operations. The JiST kernel is written entirely

in Java, and it is responsible for all the runtime aspects of the simulation time

abstraction. For example, it keeps track of simulation time, performs scheduling,

and ensures proper synchronization.

2.2 Simulation time execution

The JiST rewriter modifies Java-based applications and runs them in simulation

time, a deviation from the standard Java virtual machine (JVM) bytecode execu-

tion semantics [63]. Under the standard Java execution model, which I refer to as

actual time execution, the passing of time is not explicitly linked to the progress of

the application. In other words, the system clock advances regardless of how many

bytecode instructions are processed. Also, the program can advance at a variable

rate, since it depends not only on processor speed, but also on other unpredictable

things, such as interrupts and application inputs. Moreover, the JVM does not

make strong guarantees regarding timely program progress. It may decide, for

example, to perform garbage collection at any point.

Under simulation time execution, the progress of time is made dependent on

the progress of the application. The application clock, which represents simula-

tion time, does not advance to the next discrete time point until all processing for

the current simulation time has been completed. One could contrast simulation

time execution with real time execution, wherein the runtime guarantees that in-

12

Table 2.1: The relationship between program progress and time under different

execution models

actual time - program progress and time are independent

real time - program progress depends on time

simulation time - time depends on program progress

structions or sets of instructions will meet given deadlines. In this case, the rate

of application progress is made dependent on the passing of time. The different

execution models are summarized in Table 2.1.

The notion of simulation time itself is not new: simulation program writers

have long been accustomed to explicitly tracking the simulation time and explic-

itly scheduling simulation events in time-ordered queues [70]. The simulation time

concept is also integral to a number of simulation languages and simulation class

libraries. The novelty of the JiST system is that it embeds simulation time seman-

tics into the standard Java language, which allows the system to transparently run

the resulting simulations efficiently. Under simulation time execution, individual

application bytecode instructions are processed sequentially, following the standard

Java control flow semantics. However, the simulation time will remain unchanged.

Application code can only advance simulation time via the sleep(n) system call.

In essence, every instruction takes zero simulation time to process except for sleep,

which advances the simulation clock forward by exactly n simulated time quanta,

or ticks. In other words, the sleep function advances time under simulation time

execution, just as it does under actual time execution. The primary difference is

13

that, under simulation time execution, all the other program instructions do not

have the side-effect of allowing time to pass as they are processed.

Thus, JiST is not intended to simulate the execution of arbitrary Java pro-

grams. In other words, JiST is not a virtual machine simulator. Rather, it is

a virtual machine-based simulation platform atop which discrete event simula-

tion programs can be built and executed. JiST processes application events in

their simulation-temporal order, until all queued events are exhausted or until a

pre-determined ending time is reached, whichever comes first. This simulation

program could be modeling anything from a wireless network to a peer-to-peer

application to a new processor design to the execution of a Java program inside a

simulated virtual machine. The structure of such simulation programs is described

next.

2.3 Object model and execution semantics

JiST simulation programs are written in Java [42], an object-oriented language.

Thus, the entire simulation program comprises numerous classes that collectively

implement its logic and the state of the program is contained within individual ob-

jects during its execution. Interactions among object are represented syntactically

as method invocations.

JiST extends this traditional programming model with the notion of simula-

tion entities, defined syntactically as instances of classes that implement the empty

Entity interface. Every simulation object must be logically contained within an

entity, where object containment within an entity is defined in terms of its reacha-

bility: the state of an entity is the combined state of all objects reachable from it.

Thus, although entities are regular objects within the virtual machine at runtime,

14

they serve to logically encapsulate application objects, as shown in Figure 2.2(a).

Entities are components of a simulation and represent the granularity at which the

JiST kernel manages a running simulation.

Each entity has its own simulation time and may progress through simulation

time independently. Thus, an entity cannot share its state with any other entity,

otherwise there could be an inconsistency in the state of the simulation. In other

words, each (mutable) object of the simulation must be contained within exactly

one entity. Since Java is a safe language, this constraint is sufficient to partition

the simulation into a set of non-overlapping entities and also prevents unmediated

communication across entity boundaries.

All instructions and operations within an entity follow the regular Java control

flow and semantics. They are entirely opaque to the JiST infrastructure. Specif-

ically, object method invocations remain unchanged. The vast majority of the

entity code is involved with encoding the logic of the simulation model and is

entirely unrelated to the notion of simulation time. All the standard Java class li-

braries are available and behave as expected. In addition, the simulation developer

has access to a few JiST system calls.

In contrast, invocations on entities correspond to simulation events. The execu-

tion semantics are that method invocations on entities are non-blocking. They are

merely queued at their point of invocation. The invocation is actually performed

on the callee (or target) entity only when it reaches the same simulation time

as the calling (or source) entity. In other words, cross-entity method invocations

act as synchronization points in simulation time. Or, from a language-oriented

perspective, an entity method is like a coroutine, albeit scheduled in simulation

time. This is a convenient abstraction in that it eliminates the need for an explicit

15

simulation event queue. It is the JiST kernel that actually runs the event loop,

which processes the simulation events. The kernel invokes the appropriate method

for each event dequeued in its simulation time order and executes the event to

completion without continuation.

However, in order to invoke a method on another entity – to send it an event –

the calling entity must hold some kind of reference to the target entity, as depicted

in Figure 2.2(b). One must, therefore, distinguish between object references and

entity references. All references to a given (mutable) object must originate from

within the same entity. References to entities are free to originate from any entity,

including from objects within any entity. The rationale is that object references

imply inclusion within the state of an entity, whereas entity references represent

channels along which simulation events are transmitted. As a consequence, entities

do not nest, just as regular Java objects do not.

The separation of entities is reintroduced at runtime by transparently replac-

ing all entity references within the simulation bytecode with special objects, called

separators. The separator object identifies a particular target entity, but without

referencing it directly. Rather, separators store a unique entity identifier that is

generated by the kernel for each simulation entity during its initialization. Separa-

tors can be held in local variables, stored in fields of objects or passed as parameters

to methods, just like the regular object references that they replace. Since the re-

placement occurs across the entire simulation bytecode, it remains type-safe.

Due to this imposed separation, JiST guarantees that interactions among en-

tities can only occur via the simulation kernel. This is similar in spirit to the

JKernel design [49] in that it provides language-based protection and zero-copy

inter-entity communication. However, JKernel is designed to provide traditional

16

�

�

�

entityobject

object view entity view

simulation state

(a) Simulation programs are partitioned into entities along object boundaries.

Thus, entities do not share any application state and can independently progress

through simulation time between interactions.

�

�

�

object separator entity

object view entity view

simulation state

(b) At runtime, entity references are transparently replaced with separators, which

both preserves the separation of entity state and serves as a convenient point to

insert functionality.

Figure 2.2: Extending the Java object model.

17

system services, such as process-level protection, within a safe-language environ-

ment, whereas JiST is designed explicitly for simulation. For example, whereas

JKernel utilizes native Java threads for concurrency, JiST introduces entities. Enti-

ties provide thread-free event-based simulation time concurrency, which facilitates

scalable simulation.

The separators, in effect, represent an application state-time boundary around

each entity, similar to a TimeWarp [54] process, but at a finer granularity. They

are a convenient point to insert additional simulation functionality. By tracking

the simulation time of each individual entity, these separators allow for concurrent

execution. By adding the ability to checkpoint entities, the system may support

speculative execution as well. Finally, separators also provide a convenient point

for the distribution of entities across multiple machines. In a distributed simu-

lation, the separators function as remote stubs and transparently maintain the

abstraction of a single system image, by storing and tracking the location of enti-

ties as they migrate among machines in response to fluctuating processor, memory,

and network loads.

The role of the simulation developer, then, is to write the simulation model in

regular Java and to partition the program into multiple entities along reasonable

application boundaries. This is akin to, and no more difficult than partitioning the

application into separate classes. The JiST infrastructure will efficiently execute

this program, comprised of entities of objects, while retaining its simulation time

semantics.

The JiST model of execution, known as the concurrent object model, is similar

to, for example, the Compose [68] simulation library. It invokes a method for every

message received and executes it to completion. This is in contrast to the process

18

model that is used, for example, in the Parsec language [11], wherein explicit

blocking send and blocking receive operations are interspersed in the code. In the

process model, each entity must store a program-counter and a stack as part of

its state. Unlike Compose, message sending in JiST is embedded in the language

and does not require a simulation library. Unlike Parsec, JiST embeds itself within

the Java language and does not require new language constructs. And, with the

introduction of continuations in chapter 3, these two simulation models will even

be able to co-exist.

2.4 Simulation kernel interface

JiST simulations run atop the simulation kernel and interact with it via a short

API. The entire JiST API is exposed at the language level via the JistAPI class

listed partially in Figure 2.3.

The Entity interface tags a simulation object as an entity, which means that

invocations on this object follow simulation time semantics: method invocations

become events that are queued for delivery at the simulation time of the caller.

The getTime call returns the current simulation time of the calling entity, which

is the time of the current event being processed plus any additional sleep time.

The sleep call advances the simulation time of the calling entity. The endAt

call specifies when the simulation should end. The THIS self-referencing entity

reference is analogous to the Java this object self-reference. It refers to the entity

for which an event is currently being processed and is rarely needed. The ref call

returns a separator stub of a given entity. All statically detectable entity references

are automatically converted into separator stubs by the rewriter. This function

19

JistAPI.java
package jist.runtime;

class JistAPI

{

interface Entity { }

long getTime();

void sleep(long ticks);

void end();

void endAt(long time);

void run(int type, String name, String[] args, Object props);

void runAt(Runnable r, long time);

void setSimUnits(long ticks, String name);

interface Timeless { }

interface Proxiable { }

Object proxy(Object proxyTarget, Class proxyInterface);

class Continuation extends Error { }

Channel createChannel();

interface CustomRewriter {

JavaClass process(JavaClass jcl);

}

void installRewrite(CustomRewriter rewrite);

interface Logger

{

void log(String s);

}

void setLog(JistAPI.Logger logger);

void log(String s);

JistAPI.Entity THIS;

EntityRef ref(Entity e);

}

The partial JiST system call interface shown above is exposed at the language level

via the JistAPI class. The rewriter replaces these with their runtime implemen-

tations.

Figure 2.3: The JiST kernel interface

20

is included only to deal with rare instances, when entity types might be created

dynamically, and for completeness.

The remaining elements of the API will be explained as the corresponding

concepts are introduced. The complete listing can be found in Appendix A.

Note that, although it was possible to silently modify (i.e., rewrite) the meaning

of some existing Java functions, such as Thread.sleep and System.current-

TimeMillis instead of introducing new JistAPI functions, it was decided against

this kind of syntactic sugar. First, not all simulation time primitives have Java

counterparts and it is advantageous to keep all the simulation-oriented functions

together. Second, this approach makes simulation-oriented primitives explicit, and

preserves existing functionality.

2.5 Hello World!

The basic simulation primitives just introduced allow us to write simulators. The

simplest such program, that still uses simulation time semantics, is a counterpart

of the obligatory “hello world” program. It is a simulation with only a single entity

that emits one message at every simulation time-step, as listed in Figure 2.4. Note,

first, that this is a valid Java program. You can compile it with a regular Java

compiler, and run it as a regular Java program. But, to run hello with simulation

semantics, it should be run atop JiST within a standard virtual machine.

This simplest of simulations highlights some important points. To begin, the

hello class is an entity, because it implements the Entity interface (line 4). Enti-

ties can be created (line 7) and their methods invoked (lines 8 and 14) just as any

regular Java object. The entity method invocation, however, happens in simula-

tion time. This is most apparent on line 14, which is a seemingly infinite recursive

21

hello.java
1 import jist.runtime.JistAPI;

2

3 class hello implements JistAPI.Entity

4 {

5 public static void main(String[] args) {

6 System.out.print("start simulation");

7 hello h = new hello();

8 h.myEvent();

9 }

10

11 public void myEvent()

12 {

13 JistAPI.sleep(1);

14 myEvent();

15 System.out.print("hello world, t=" +

16 JistAPI.getTime());

17 }

18 }

The simplest of simulations, shown above, consists of a single entity that emits a

message at each time step.

Figure 2.4: Hello World! simulation

22

call. In fact, if this program is run under a regular Java virtual machine (i.e.,

without JiST rewriting) then the program would abort with a stack overflow at

this point. However, under JiST, the semantics is to schedule the invocation via

the simulation time kernel and thus the call becomes non-blocking. Therefore, the

myEvent method, when run under JiST semantics, will advance simulation time by

one time step (line 13), then schedule a new event at that future time, and finally

print a hello message with the entity simulation time (line 16). Instead of a stack

overflow, the program runs in constant stack space and the output is:

> simulation start

> hello world, t=1

> hello world, t=2

> hello world, t=3

> etc.

The JistAPI class, used on lines 4, 13 and 16, represents the application inter-

face exposed by the simulation kernel. If one executes the hello program without

the JiST runtime, simply under a regular Java runtime, there will be no active sim-

ulation kernel. In this case, the entire JistAPI acts as a dummy class that merely

facilitates type-safe execution: the Entity interface is empty, the sleep call does

nothing and the getTime function returns zero. The correct way to think about

the JistAPI is that it marks the program source in a manner that both respects

Java syntax and is preserved through the compilation process. It allows type-safe

compilation of JiST simulation programs using a conventional Java compiler.

When running the hello simulation within JiST, the simulation kernel will be

loaded and running. Among other things, this kernel installs a class loader into

the JVM, which dynamically rewrites the hello bytecode as it is loaded. The

various JistAPI markings within the compiled simulation program serve to direct

the code transformations that introduce the simulation time semantics into the

23

bytecode. The entire JiST functionality is exposed to the simulation developer in

this manner. Thus, JiST extends the object model of the Java language and the

execution semantics of its virtual machine. Nevertheless, the language, as well as

its compiler and virtual machine, are reused.

2.6 Rewriter

The notable pieces of the JiST system are the bytecode rewriter and the simulation

time kernel, since these components introduce and support the simulation time ex-

ecution semantics, respectively. The purpose of the rewriting step is to transform

the JiST instructions embedded within the compiled simulation program into code

with the appropriate simulation time semantics, respectively. The result is a par-

titioned application, as depicted in Figure 2.2(b), in which entities encapsulate

private state, reference other entities only through separator stubs, and communi-

cate with one another only via the simulation time kernel. The basic design of the

rewriter is that of a multi-pass visitor over the class file structure, traversing and

possibly modifying the class, its fields and methods, and their instructions, based

on the set of rules summarized below.

The rewriter first verifies an application by performing bytecode checks, in

addition to the standard Java verifier, that are specific to simulations. Specifically,

it ensures that all classes that are tagged as entities conform to entity restrictions:

the fields of an entity must be non-public and non-static; all public methods should

be concrete and should return void; and some other minor restrictions. These

ensure that the state of an entity is completely restricted to its instance and also

allow entity methods to be invoked without continuation, as per simulation time

semantics.

24

Conforming to the earlier-stated goal of partitioning the application state, en-

tities are never referenced directly by other entities. This isolation is achieved

by the insertion of stub objects, called separators. The rewriter also adds a self-

referencing separator field to each entity and code to initialize it using a unique

reference provided by the simulation time kernel upon creation.

For uniformity, all entity field accesses are converted into method invocations.

Then, all method invocations on entities are subsequently replaced with invoca-

tions to the simulation time kernel. This invocation requires the caller entity time,

the method invoked, the target instance, and the invocation parameters: the sim-

ulation time comes from the kernel; the method invoked is identified using an

automatically created and pre-initialized method reflection stub; the target in-

stance is identified using its separator, which is found on the stack in place of the

regular Java object reference along with the invocation parameters, which must be

packed into an object array to conform with Java reflection-based calling conven-

tions. The bytecode rewriter injects all the necessary code to do this inline, and

also deals with the natural complications of handling primitive types, the this key-

word, constructor invocation restrictions, static initializers, and other Java-related

details.

The rewriter then modifies all entity creations in all classes to place a separator

on the stack in place of the object reference. All entity types in all entities are

also converted to separators, namely in: field types, method parameter types and

method return types, as well as typed instructions, including field accesses, array

accesses and creation, and type casting instructions. Finally, all static calls to the

JistAPI are converted into equivalent implementations that invoke functionality

of the simulation time kernel.

25

In addition to the entity-related program modifications, the rewriter also per-

forms various static analyses that help drive runtime optimizations. These will be

discussed in chapter 3.

For ease-of-use, the JiST rewriter is implemented as a dynamic class loader.

It uses the Byte-Code Engineering Library [31] to automatically modify the sim-

ulation program bytecode as it is loaded by the JiST bootstrapper into the Java

virtual machine. Since the rewriting is performed only once, it could, if necessary,

also be implemented as a separate offline process.

2.7 Simulation kernel

After rewriting, the simulation classes may be executed over a regular Java virtual

machine. During their execution, these rewritten applications interact with the

simulation time kernel, which supports the simulation time semantics.

The simulation time kernel serves a number of functions. The kernel is respon-

sible for scheduling and transmitting time-stamped events among the entities. It

provides unique identifiers for each entity created in the system, which are used,

for example, by the entity separator stubs during method invocation. The ker-

nel maintains a time-stamp and an event queue structure for every entity in the

system, and it is thus able to respond to application getTime requests and time-

stamp outgoing events. The kernel queues events on behalf of each entity, and

automatically advances the entities though simulation time, delivering events for

application processing as appropriate. And, finally, the kernel supports various

system maintenance functions, such as a entity garbage collection, load balancing

and application monitoring.

26

Simulation processing begins via an anonymous bootstrap entity with a single

scheduled event: to invoke the main() method of the given entry point class at

time t0. The system then processes events in simulation temporal order until

there are no more events to process, or until a pre-determined time is reached,

whichever comes first. This general approach supports the sequential execution

of any discrete event simulation. JiST may transparently exploit parallelism or

process messages optimistically, as discussed in chapter 3.

In general, the design of the JiST simulation time kernel is similar to that of the

TimeWarp Operating System [54] kernel and that of the Parsec runtime, however

it is considerably more lightweight and efficient. The language-based implementa-

tion allows efficient message delivery to local entities, without any serialization or

memory copy. Furthermore, since entities are merely objects rather than threads

or processes, they utilize fewer system resources: JiST entities require less memory

and neither require a stack nor encumber the system scheduler. Finally, the JiST

kernel can transparently support efficient checkpointing and rollback of entities

using language-based serialization and reflection.

2.8 Summary

JiST is a prototype virtual machine-based simulator that combines the traditional

language-based and systems-based approaches to simulator design. It allows simu-

lations to be written in plain Java and then executed over a standard Java virtual

machine, yet introduces simulation time semantics and other simulation constructs

and optimizations using bytecode-level program transformations. This chapter, I

have described the fundamentals of simulation time execution, and the various

components of the JiST architecture that support it.

Chapter 3

Flexibility of Virtual Machine-based

Simulation
One of the key advantages of virtual machine-based simulation is its inherent flex-

ibility. This chapter is devoted to a discussion of various extensions to the basic

model described in chapter 2, introducing concepts such as timeless objects, proxy

entities, blocking events, and simulation time concurrency. Many of these additions

are completely orthogonal to the simulation program. In other cases, a few anno-

tations within the simulation code drive high-level optimizations and cross-cutting

transformations performed by the rewriter, akin to aspect-oriented programming

[61]. Moreover, the ease with which these enhancements are integrated into the

basic design underscores the flexibility of the JiST approach and suggests that it

is a compelling vehicle for ongoing simulation research.

3.1 Zero-copy semantics

The first extension to the model is that of timeless objects. A timeless object is

defined as one that will not change over time. Knowing that a value is temporally

stable allows the system to safely pass it across entities by reference, rather than

by copy, significantly improving event throughput.

The system may be able to statically infer that an object is transitively open-

world immutable [18] and automatically infer that event parameters are timeless.

However, any static analysis will be overly conservative at times. Thus, one can also

explicitly request zero-copy semantics by using the JistAPI.Timeless interface to

27

28

tag an object. The annotation implies that the object will not be modified at any

time after references to it escape an entity boundary. The addition of a single tag,

or the automatic detection of the timeless property, conveniently affects all the

events throughout the simulation that contain parameters of this type. Such cross-

cutting transformations lie at the heart of the JiST design, providing transparency,

as defined back in chapter 1: the separation of concerns related to correctness and

execution efficiency.

In addition to the performance benefits of eliminating a memory copy, the

timeless tag is also useful for sharing state among entities to reduce simulation

memory consumption, as depicted in Figure 3.1. For example, network packets

are defined to be timeless in SWANS, a JiST-based wireless network simulator

(see chapter 4), in order to prevent unnecessary duplication: broadcasted network

packets are therefore not copied for every recipient, nor are they copied into the

various sender retransmit buffers. Similarly, one can safely share object replicas

across different instances of a simulated peer-to-peer application. This sharing

of immutable state among entities is key to the efficient utilization of available

memory and to handling larger simulation models.

Note, however, that the explicit tagging facility should be exercised with care:

shared objects must actually be treated as immutable once they escape an entity

boundary. Otherwise, such shared objects can lead to temporal inconsistencies

within the simulation state, because individual entities may progress through sim-

ulation time at different rates. Conversely, the simulation developer should be

aware that non-timeless objects are passed across entities by copy, which differs

from regular Java call-by-reference semantics for non-primitive parameters. As a

direct consequence, it is impossible to transmit information back to the caller using

29

�

�

	

object

timeless

entity

separator

entity view

object view

si
m

ul
at

io
n

st
at

e

Objects passed across entities should be timeless – in other words, should hold

temporally stable values – to prevent temporal inconsistencies in the simulation

state. Sharing timeless objects among entities is an effective way to conserve

simulation memory and using zero-copy semantics improves simulation throughput.

Figure 3.1: Timeless objects.

30

a (mutable) object parameter of an event. Two separate events should be used

instead.

3.2 Reflection-based configuration

An important consideration in the design of simulators is configurability: the desire

to reuse the simulator for many different experiments. However, this can adversely

affect performance. Configuration is usually supported either at the source-code

level, via configuration files, or with scripting languages.

Source-level configuration entails the recompilation of the simulation pro-

gram before each run with hard-coded simulation parameters and linkage with a

small driver program for simulation initialization. This approach to configuration

is flexible and runs efficiently, because the compiler can perform constant propaga-

tion and other important optimizations on the generic simulation code to produce

a specialized and efficient executable. However, it requires recompilation on each

run.

The use of configuration files eliminates the need for recompilation. The

configuration is read and parsed by a generic driver program as it initializes the

simulation. This option is not only brittle and limited to pre-defined configuration

options, it eliminates opportunities for static compiler optimizations.

The script-based configuration approach is championed by ns2. A scripting

language interpreter – Tcl, in the case of ns2 – is backed by the compiled simulation

runtime, so that script variables are linked to simulation values, and a script can

then be used to instantiate and initialize the various pre-defined simulation com-

ponents. Unfortunately, the linkage between the compiled simulation components

and the configuration scripts can be difficult to establish. In ns2, it is achieved

31

manually via a programming pattern called split objects, which requires a language

binding that channels information in objects within the compiled space to and from

objects in the interpreted space. This not only clutters the core simulation code,

but it is also inefficient, because it duplicates information. Furthermore, script

performance depends heavily on this binding. The choice of combining C with Tcl

in ns2, for example, imposes excessive string manipulation and leads to long con-

figuration times. More importantly, this approach eliminates static optimization

opportunities, which hurts performance. It also results in the loss of both static

and dynamic type information across the compiled-interpreted interface, thereby

increasing the potential for error.

In contrast, JiST-based simulations enjoy both the flexibility of script-based

configuration and the performance advantages of source-level configuration. The

scripting functionality comes “for free” in JiST. It does not require any additional

code in the simulation components, nor any additional memory. And, the script

can configure a simulation just as quickly as a custom driver program. This is

because Java is a dynamic language that supports reflection. As illustrated in

Figure 3.2, the access that the script engine has to the simulation state is just as

efficient and expressive as the compiled driver program. A script engine can query

and update simulation values by reflection for purposes of tracing, logging, and

debugging, and it can also dynamically pre-compile the driver script directly to

bytecode for efficient execution. The simulation bytecode itself is compiled and

optimized dynamically as the simulation executes. Thus, simulation configuration

values are available to the Java optimizer and allow it to generate more efficient

and specialized code. The information available to the optimizer at runtime is a

super-set of what is available to a static simulation compiler. Finally, while the

32

�

�

�

�

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

rewriter

script engine
simulation

state

kernel
simulationcode

execution

simulator bytecode

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

configuration script

modified classes

2

1

3

JiST provides multiple scripting interfaces to configure its simulations without

source modification, memory overhead, or loss of performance. (1) As before,

simulation components are loaded and rewritten on demand. (2) The script engine

configures the simulation via reflection and may dynamically compile scripts to

bytecode for performance. (3) The simulation runs as before, interacting with the

kernel as necessary.

Figure 3.2: Reflection-based configuration

33

hello.bsh
1 System.out.println("starting simulation from BeanShell!");

2 import jist.minisim.hello;

3 hello h = new hello();

4 h.myEvent();

hello.jpy
1 print ’starting simulation from Jython script!’

2 import jist.minisim.hello as hello

3 h = hello()

4 h.myEvent()

Figure 3.3: Example BeanShell and Jython script-based simulation drivers.

34

scripting language environment may support a more relaxed type system, the type-

safety of the underlying simulation components is still guaranteed by the virtual

machine, facilitating earlier detection of scripting errors.

The script functionality is exposed via the JistAPI, so that simulators may

also embed domain-specific configuration languages. JiST supports the BeanShell

engine, with its Java syntax, and also the Jython engine, which interprets Python

scripts. Java-based engines for other languages, including Smalltalk (Bistro), Tcl

(Jacl), Ruby (JRuby), Scheme (Kawa), JavaScript (Rhino), or a custom simulation

definition language interpreter can easily be integrated as well and they can even

co-exist. As is the case with compiled driver programs, the driver script is invoked

within its host script engine by the JiST kernel. The script is the first, bootstrap

simulation event. Example scripts are shown in Figure 3.3.

The scripting functionality within JiST is truly orthogonal to the simulation

components. It requires no additional code within the component implementations,

no memory overhead for simulation state, and no performance overhead over the

equivalent compiled simulation driver programs.

3.3 Tight event coupling

Under JiST, simulation events are encoded as method invocations, which reduces

the amount of simulation code required and improves its clarity without affecting

runtime performance. The benefits of this encoding are summarized in Table 3.1.

The first benefit is type-safety, which eliminates a common source of error: the

source and target of an event are statically checked by the Java compiler. Secondly,

the event type information is also managed automatically at runtime, which com-

pletely eliminates the many event type constants and associated event type-cast

35

code that are otherwise required. A third benefit is that marshaling of event pa-

rameters into the implicit event structures is performed automatically. In contrast,

simulators written against event-driven libraries often require a large number of ex-

plicit event structures and code to simply pack and unpack parameters from these

structures. Finally, debugging event-driven simulators can be onerous, because

simulation events arrive at target entities from the simulation queue without any

context. Thus, it can be difficult to determine the cause of a faulty or unexpected

incoming event. In JiST, an event can automatically carry its context information:

the point of dispatch (with line numbers, if source information is available), as well

as the state of the source entity. These contexts can then be chained to form an

event causality trace, which is the equivalent of a stack trace, but is far more use-

ful in an event-driven application. For performance reasons, this information is

collected only with the kernel in debug mode, but no changes to the application

are required

The tight coupling of event dispatch and delivery in the form of a method

invocation also has important performance implications. Tight event-loops, which

can be determined only at runtime, can be dynamically optimized and inlined even

across the kernel boundary between the JiST kernel and the running simulation, as

first shown by the Jalapeño project [3]. For example, the dynamic Java compiler

may decide to inline portions of the kernel event queuing code into hot spots within

the simulation code that frequently enqueue events. Or, conversely, small and

frequently executed simulation event handlers may be inlined into the kernel event

loop. The tight coupling also abstracts the simulation event queue, which will,

in the future, allow the JiST kernel to transparently execute the simulation more

36

Table 3.1: Benefits of encoding simulation events as entity method invocations.

type safety - source and target of event statically

checked by compiler

event typing - not required; events automatically type-

cast as they are dequeued

event structures - not required; event parameters automat-

ically marshaled

debugging - location of event dispatch and state of

calling entity available

execution - transparently allows for parallel and dis-

tributed execution

37

efficiently – in parallel, distributed, and even optimistically – without requiring

any modifications to the simulation code, as discussed in section 3.7.

3.4 Interface-based entities

Entities encapsulate simulation state and present an event-oriented interface using

methods. However, methods also represent regular Java invocations on objects.

Thus, method invocations have two meanings; there exists a clash of functionality

between entity and object method invocation semantics at the syntactic level. This

imposes restrictions on the developer and can lead to awkward coding practices

within entity classes. One would prefer both kinds of method invocations to co-

exist, and this is exactly the purpose of proxy entities. Proxy entities are interface-

based entities that relay events onto internal target objects. They are created

via the proxy system call, which accepts a proxy target and one or more proxy

interfaces. The proxy target can be one of three types: a regular object, a proxiable

object, or an entity, as illustrated in Figure 3.4 and described below. The proxy

interface indicates which methods will be exposed and relayed. Clearly, the proxy

target must implement the proxy interface and this is also verified by the system.

Regular objects do not contain the machinery to receive events from the

kernel, so they are wrapped, along with any reachable objects, within a new entity,

which relays methods to the given target object that it encloses. The effect of this

entity wrapping is to insert an additional method invocation into the event delivery

process. Note, also, that if one invokes the proxy call twice on the same object,

the result is two new entities that share that object in their state, as well as all

those reachable from it. This indirection can, however, be eliminated through the

use of proxiable objects.

38

�

�

�

entity

object

proxy interface

separator

proxiable objectregular object entity

Proxy entities use an interface-based approach to identify entity methods, thus

simplifying the development of entities. The proxy system call behavior depends

on the type of the target.

Figure 3.4: Interface-based proxy entities

39

A proxiable object is an object that implements the JistAPI.Proxiable

interface. This interface, like the JistAPI.Entity interface, is empty and serves

only as a marker to the rewriter. The effect of this tag is to introduce the additional

machinery for receiving events from the kernel. In this manner, the extra method

call overhead of an intermediate relaying entity is eliminated, so this approach

is always preferred over proxying regular objects, when simulator source code is

available. It requires merely the addition of a proxiable tag to the target.

Finally, one can proxy an already existing entity. An entity already includes all

the machinery required to receive and to process events. Thus, the event delivery

path is left unchanged. Nevertheless, the proxy call does serve an important

function on the dispatch side. The result of the proxy call, in this and in all

the previous cases, is a special separator object that relays only the events of the

specified proxy interface. Thus, the system call serves to restrict events from a

particular source, which is useful in larger simulations. The proxying generates a

capability (in the systems sense), since it is unforgeable: the separator cannot be

cast to other interfaces at runtime.

Proxy entities simplify development. They allow an object the flexibility of

combining both event-driven and regular method invocations within the same class.

They are interface-based, so they do not interfere with the object hierarchy. And,

they allow for a capability-like isolation of functionality, which is useful in larger

simulators. Finally, the internal mechanisms used for both event dispatch and

delivery of events are different, but there is no visible difference from regular entities

at the syntactic level nor any significant degradation in performance.

The code listing in Figure 3.5 shows how to use proxy entities with a basic exam-

ple, similar to the earlier hello example. Note that myEntity is proxiable, because

40

proxy.java
1 import jist.runtime.JistAPI;

2

3 public class proxy

4 {

5 public static interface myInterface

6 extends JistAPI.Proxiable

7 {

8 void myEvent();

9 }

10

11 public static class myEntity implements myInterface

12 {

13 private myInterface proxy =

14 (myInterface)JistAPI.proxy(this, myInterface.class);

15 public myInterface getProxy() { return proxy; }

16

17 public void myEvent()

18 {

19 JistAPI.sleep(1);

20 proxy.myEvent();

21 System.out.println("myEvent at t="+JistAPI.getTime());

22 }

23 }

24

25 public static void main(String args[])

26 {

27 myInterface e = (new myEntity()).getProxy();

28 e.myEvent();

29 }

30 }

Figure 3.5: An example illustrating the use of proxy entities.

41

it implements the myInterface on line 11, which inherits JistAPI.Proxiable on

line 6. The proxy separator is defined on line 14 using the JistAPI.proxy call

with the target proxiable instance and appropriate interface class. The invocations

on this proxy on lines 20 and 28 occur in simulation time.

3.5 Blocking invocation semantics

JiST conveniently models events as invocations on entities. This facility provides

all the functionality of an explicit event queue, which is all that many existing

simulators use. However, it remains cumbersome to model simulation processes,

since they must be written as event-driven state machines. While many entities,

such as network protocols or routing algorithms, naturally take this event-oriented

form, other kinds of entities do not. For example, an entity that models a file-

transfer is more readily encoded as a process than as a sequence of events. Specif-

ically, one would rather use a tight loop around a blocking send routine than

dispatch send begin events to some transport entity, which will eventually dis-

patch matching send complete events in return. Many existing applications make

use of system calls with blocking semantics. It is desirable to be able to run such

applications within simulators. To that end, JiST supports blocking invocation

semantics and simulation time continuations.

In order to invoke an entity method with continuation, the simulation de-

veloper merely declares that a given entity method is a blocking event. Block-

ing and non-blocking methods can co-exist within the same entity. Syntacti-

cally, an entity method is blocking, if and only if it declares that it throws a

JistAPI.Continuation exception. This exception is not actually thrown and

need not be explicitly handled by a caller. It acts merely as a tag to the rewriter,

42

�

�

�

event

sl
ee

p
sl

ee
p

sl
ee

p

call

callback

type

entity

save continuation

restore continuation

event structure

ti
m

e

nonblock

(. . . .)

e1

t1

e2

block

(. . . .)

e1

e2

t2

block

(. . . .)

e1

t3

yes

e1

time

methodtarget

parameters

caller state resultte1
te2

t1

t2

t3

Blocking events allow process-oriented development. When a blocking entity

method is invoked, the continuation state of the current event is saved and at-

tached to a call event. When this call event is complete, the kernel schedules a

callback event to the caller. The continuation is restored and the caller continues

its processing from where it left off, albeit at a later simulation time.

Figure 3.6: Blocking invocation semantics

�

�

	

kernelcall
save

kernel
restore

result

event processing stack

ev
en

t l
oo

p

regular method invocation

blocking entity invocation

event processing code path

continuation code path

The JiST event loop also functions as a continuation trampoline. It saves the

continuation state on a blocking entity method invocation and restores it upon re-

ceiving the callback. Due to Java constraints, the stack must be manually unwound

and preserved.

Figure 3.7: Unrolling the Java stack.

43

preserved with the method signature through compilation to bytecode. Moreover,

it need not be explicitly declared further up the call-chain, since it is a sub-class

of Error, the root of an implicit exception hierarchy.

The semantics of a blocking entity method invocation, as shown in Figure 3.6,

are a natural extension atop the existing event-based invocation. The kernel first

saves the call-stack of the calling entity and attaches it to the outgoing event. When

the call event is complete, the kernel notices that caller information was attached

to it, and therefore dispatches a callback event to the caller, with its continuation

information. Thus, when the callback event is eventually dequeued, the state is

restored and the execution continues right after the point of the blocking entity

method invocation. In the meantime, however, the local simulation time will have

progressed to the simulation time at which the calling event was completed, and

other events may have been processed against the entity.

This approach has a number of advantages. It allows blocking and non-blocking

entity methods to co-exist, which allows a combination of event-oriented and

process-oriented simulation. Methods can arbitrarily be tagged as blocking, and

the basic event structures are extended to store the call and callback information.

However, there is no notion of an explicit process, nor even a logical one. Unlike

process-oriented simulation runtimes, which must pre-allocate fixed-size stacks for

each real or logical process, the JiST stacks are variably-sized and allocated on

demand. The stacks are allocated only at the point of the blocking entity invo-

cation, and they exist on the heap along with the event structure that contains

it. This dramatically reduces memory consumption. Moreover, the model is ac-

tually akin to threading, in that multiple continuations for processing within a

single entity can exist concurrently. To the best of my knowledge, this is a first

44

for any simulation language. Finally, there is no system context-switch required.

The concurrency occurs only in simulation time and the underlying events may be

executed sequentially within a single thread of control.

The code listing in Figure 3.8 shows an entity with a single blocking method.

Notice that blocking is a blocking method, since it declares that it may throw

a JistAPI.Continuation exception on line 5. Otherwise, blocking would be a

regular entity method invoked in simulation time. The effect of the blocking tag is

best understood by comparing the output for the program both with and without

the blocking semantics, i.e. both with and without the blocking tag on line 5. Note

how the timestamps are affected, in addition to the ordering of the events.

blocking non-blocking
> i=0 t=0

> called at t=0

> i=1 t=1

> called at t=1

> i=2 t=2

> called at t=2

> i=0 t=0

> i=1 t=0

> i=2 t=0

> called at t=0

> called at t=0

> called at t=0

Unfortunately, saving and restoring the Java call-stack for continuation is not

a trivial task [96]. The fundamental difficulty arises from the fact that stack ma-

nipulations are not supported at either the language, library, or bytecode level.

The JiST design draws and improves on the ideas in the JavaGoX [100] and the

PicoThreads [14] projects, which also save the Java stack for entirely different

reasons. The design eliminates the use of exceptions to carry state information.

This is considerably more efficient for the purposes of simulation, since Java ex-

ceptions are expensive. The approach also eliminates the need to modify method

signatures. This fact is significant, since it allows the JiST continuation captur-

ing mechanism to function even across the standard Java libraries. In turn, this

enables, for example, the execution of standard, unmodified Java network appli-

45

cont.java
1 import jist.runtime.JistAPI;

2

3 public class cont implements JistAPI.Entity

4 {

5 public void blocking() throws JistAPI.Continuation

6 {

7 System.out.println("called at t="+JistAPI.getTime());

8 JistAPI.sleep(1);

9 }

10

11 public static void main(String args[])

12 {

13 cont c = new cont();

14 for(int i=0; i<3; i++)

15 {

16 System.out.println("i="+i+" t="+JistAPI.getTime());

17 c.blocking();

18 }

19 }

20 }

Figure 3.8: An example illustrating the use of a blocking invocations.

46

cations within network simulators written atop JiST, as discussed in chapter 4.

Briefly, a network socket operation is rewritten into a blocking method invoca-

tion, so that the application is “frozen” in simulation time until after the network

operation processing is simulated.

Since Java does are not permit access to the call-stack, JiST is instead forced

convert parts of the original simulation program into a continuation-passing style

(CPS). The first step is to determine which parts of the simulation code need to

be transformed. For this purpose, the JiST rewriter incrementally produces a call-

graph of the simulation at runtime as it is loaded and uses the blocking method

tags to compute all continuable methods. Continuable methods are those methods

that could exist on a call stack at the point of a blocking entity method invocation.

Or, more precisely, a continuable method is defined recursively as any method that

contains:

• either an entity method invocation instruction, whose target is a blocking

method;

• or a regular object method invocation instruction, whose target is itself a

continuable method.

Note that the continuable property does not spread recursively to the entire ap-

plication, since the recursive element of the continuable definition does not cross

entity boundaries.

Each method within the continuable set undergoes a basic CPS transformation,

as shown in Figure 3.9. The rewriter scans the method for continuation points and

assigns each one a program location number. It then performs a data-flow analysis

of the method to determine the types of the local variables and stack slots at

that point and uses this information to generate a custom class that will store the

47

Before CPS transform:

1 METHOD continuable:

2

3 instructions

4

5 invocation BLOCKING

6

7 more instructions

After CPS transform:

1 METHOD continuable:

2 if jist.isRestoreMode:

3 jist.popFrame f

4 switch f.pc:

5 case PC1:

6 restore f.locals

7 restore f.stack

8 goto PC1

9 ...

10

11 instructions

12

13 setPC f.pc, PC1

14 save f.locals

15 save f.stack

16 PC1:

17 invocation BLOCKING

18 if jist.isSaveMode:

19 jist.pushFrame f

20 return
21

22 more instructions

These pseudo-bytecode listings show the CPS transformation that occurs on all

continuable methods. The transformation instruments the method to allow it to

either (a) save and exit or (b) restore and start from any continuable invocation

location.

Figure 3.9: CPS transformation on continuable program locations.

48

continuation frame of this program location. These classes, containing properly

typed fields for each of the local variables and stack slots in the frame, will be linked

together to form the preserved stack. Finally, the rewriter inserts both saving and

restoration code for each continuation point. The saving code marshals the stack

and locals into the custom frame object and pushes it onto the event continuation

stack via the kernel. The restoration code does the opposite and then jumps right

back to the point of the blocking invocation.

All of this must be done in a type-safe manner, which requires special consid-

eration not only for the primitive types, but also for arrays and null-type values.

There are other restrictions that stem from the bytecode semantics. Specifically,

the bytecode verifier will allow uninitialized values on the stack, but not in local

variables or fields. The bytecode verifier will also not allow an initializer (construc-

tor) to be invoked more than once. Both of these possibilities are conveniently

eliminated by statically verifying that no constructor is continuable.

Finally, the kernel serves as the continuation trampoline, as shown in Fig-

ure 3.7. When the kernel receives a request to perform a call with continuation,

it registers the call information, switches to save mode, and returns to the caller.

The stack then unwinds, and eventually returns to the event loop, at which point

the call event is dispatched with the continuation attached. When the call event

is received, it is processed, and a callback event is dispatched in return with both

the continuation and the result attached. Upon receiving this callback event, the

kernel switches to restore mode and invokes the appropriate method. The stack

then winds up to its prior state, and the kernel receives a request for a continuation

call yet again. This time, the kernel simply returns the result (or re-throws the

49

exception) of the call event and allows the event processing to continue from where

it left off.

The invocation time of a blocking event with this implementation is propor-

tional to the length of the stack. The time to perform a blocking invocation with

a short call stack is only around 2-3 times the dispatch time of a regular event.

Thus, continuations present a viable, efficient way to reclaim process-oriented sim-

ulation functionality within an event-oriented simulation framework. Extensions

to the Java libraries and virtual machine that expose the stack in a type-safe man-

ner, as presented in [20], could completely eliminate the performance gap between

non-blocking and blocking events.

3.6 Simulation time concurrency

Using only basic simulation events and continuations, a cooperative simulation time

threading package has been constructed. It can be transparently used as non-pre-

emptive replacement for the Java Thread class within existing Java applications to

be simulated. Pre-emptive threading can also be supported, if necessary, by insert-

ing simulation time context switch calls at appropriate code locations during the

rewriting phase. However, since the primary objective is simulation throughput,

cooperative concurrency is preferred.

Given simulation time concurrency, one may wish to recreate various simu-

lation time synchronization primitives. As an example, I have constructed the

channel primitive from Hoare’s Communicating Sequential Processes (CSP) lan-

guage [51]. It has been shown that other synchronization primitives, such as locks,

semaphores, barriers, monitors, and FIFOs, can readily be built using such chan-

nels. Or, these primitives can be implemented directly within the kernel. As shown

50

in Figure 3.10, the CSP channel blocks on the first receive (or send) call and stores

the continuation. When the matching send (or receive) arrives, then the data

item is transferred across the channel and control returns to both callers. In other

words, two simulation events are scheduled with the appropriate continuations. A

JiST channel is created via the createChannel system call. It supports both CSP

semantics as well as non-blocking sends and receives. JiST channels are used, for

example, within the SWANS implementation of TCP sockets in order to block a

Java application when it calls receive and to send information back to the ap-

plication when a packet arrives. In this case, the channel mimics the traditional

boundary between the user-level network application and the in-kernel network

stack implementation.

3.7 Parallel, optimistic, and distributed execution

The JiST system, as described thus far, is capable of executing simulations se-

quentially and it does so with performance that exceeds existing, highly optimized

simulation engine instances. JiST also supports inter-simulation concurrency. Any

number of JiST engines can be started on separate machines, each capable of ac-

cepting simulation jobs from a central JiST job queue, where JiST clients post

simulations. As each job is processed on the next available server, the correspond-

ing client will service remote class loading requests and receive redirected output

and simulation logs. This näıve approach to parallelism has proven sufficient at

present, since JiST can already model very large networks on individual machines,

and it provides perfect speed-up for batches of simulations. JiST, however, was

explicitly designed to allow concurrent, distributed and speculative execution, or

intra-simulation parallelism. By modifying the simulation time kernel, unmodified

51

simulations can be executed over a more powerful computing base. These ker-

nels have not been implemented, but many hooks are already in place for such

extensions, and they can be implemented transparently with respect to existing

simulation programs.

Parallel execution in JiST may be achieved by dividing the simulation time

kernel into multiple threads of execution, called Controllers, which already exist

in the single-threaded implementation. Each controller owns and processes the

events of a subset of the entities in the system, as shown in Figure 3.11. The

controllers synchronize with one another in order to bound their, otherwise, inde-

pendent forward progress.

JiST can further be extended to transparently support entity rollback, so that

simulation time synchronization protocols among the various controllers need not

be conservative. State checkpoints can be automatically taken through object

cloning. Alternatively, efficient undo operators can be statically generated through

code inspection in some cases or possibly provided by the developer in other cases

for added performance. In any case, entity state changes can always be dynamically

intercepted either at the level of complete entities, individual objects, or even

individual fields within an object. These state changes can be logged for possible

undo, allowing the JiST kernel to transparently perform speculative execution of

the simulation.

Controllers may also be distributed in order to run simulations across a cluster

of machines. Conveniently, Java support for remote method invocation (or more

efficient drop-in alternatives such as KaRMI [84]) combined with automatic object

serialization provides location transparency among distributed controllers. Even

beyond this, the existing separator objects (which replace entity references during

52

�

�

	

channel

time

entity

continuation

data

receive

receive
callback

send

send
callback

A blocking CSP channel is built using continuations. SWANS uses JiST chan-

nels to create simulated sockets with blocking semantics. Other simulation time

synchronization primitives can similarly be constructed.

Figure 3.10: Simulation time CSP Channels.

�

�

�

. . .

. . .
.

separatorcontroller entity

. . .
mn

m2

e2

e1 e3

m1m0

The JiST framework allows parallelism to be transparently introduced by parti-

tioning the system entities among different, possibly distributed, threads of con-

trol. Separators preserve the single system image abstraction among distributed

controllers.

Figure 3.11: Partitioning simulation entities among Controllers.

53

rewriting) allow entities to dynamically be moved among controllers in the system,

for balancing load or for minimizing invocation latency and network bandwidth,

while the simulation is running. The automatic insertion of separators between

entities provides the simulation developer with a convenient single system image

abstraction of the cluster.

3.8 Simulation research platform

In addition to being a practical and efficient simulation tool for building simulators,

the JiST abstraction provides a convenient research platform for the exploration

of new simulation techniques. Primarily, this is due to the flexibility afforded by

the intermediate Java bytecode representation of simulations.

I have just described, for example, how to convert simulation time programs

at the bytecode level to run in parallel using either conservative synchronization

algorithms [27, 28, 55] or speculative global virtual time [53, 38] algorithms. The

bytecode is also used to introduce a language-based single system image abstrac-

tion that permits simulations to be transparently distributed across a cluster of

machines and to be dynamically load balanced.

Other candidates from the more recent simulation research exist. Static code

analysis techniques can be used to produce efficient entity checkpointing as in [41].

Alternatively, reverse computations can be produced for entity rollback as in [26].

The JiST design can simultaneously support different synchronization protocols

for different entities by tagging them with different interfaces as in [68]. Finally, a

continuation-passing style transformation can be applied to process-oriented sim-

ulations in order to eliminate the need for an entity stack as in [19]. Research into

each of these ideas would benefit from the availability of pre-existing simulations

54

and, as with JiST, from the ability to reuse a standard language compiler and its

highly optimized, robust runtime.

3.9 Summary

In this chapter, a number of extensions to the basic model have been presented,

highlighting the advantages of the JiST design and its inherent flexibility. I have

discussed timeless objects, reflection-based scripting, tight event coupling, proxy

entities, blocking events, simulation time concurrency, concurrent and distributed

simulation kernels, and other ideas from the simulation research literature that

could be incorporated into the JiST rewriting phase. The table below summarizes

the benefits of the virtual machine-based approach to simulation.

application-oriented benefits

type safety - source and target of simulation events are statically

type-checked by the compiler, eliminating a large class

of errors

event types - numerous constants and the associated type-casting

code are not required; events are implicitly typed

event structures - numerous data structures used to carry event pay-

loads and the associated event marshaling code can be

eliminated; event payloads are implicitly marshaled

debugging - event dispatch location and source entity state are

available during event processing; can generate event

causality trace to determine the origin of a faulty

event

55

language-oriented benefits

reflection - allows script-based simulation configuration, debug-

ging and tracing in a manner that is transparent to

the simulation implementation

safety - allows for an object-level isolation of state between

entities; ensures that all simulation time calls pass

through the kernel; allows sharing of immutable ob-

jects; provides flexibility in entity state aggregation

rewriting - operates at the bytecode level; does not require

source-code access; allows cross-cutting program

transformations, guided by program analysis and an-

notations

Java - JiST reuses the standard language, libraries, com-

piler, and runtime

system-oriented benefits

inter-process

communication

- since co-located entities share the same process space,

messages are passed by reference and there is no seri-

alization; there is also no context switch required

language-based

kernel

- permits cross-layer optimization between kernel and

running simulation for faster system calls and event

dispatch

robustness - strict Java verification ensures that simulations will

not crash, but, at worst, fail by exception

56

garbage

collection

- memory for objects with long and variable life-

times, such as network packets, is automatically

managed; facilitates memory savings through shar-

ing of immutable objects; avoids memory leaks for

long-running simulations and facilitates sophisticated

memory management protocols

concurrency - simulation object model and execution semantics sup-

port parallel and optimistic execution transparently

with respect to the application

distribution - provides a single system image abstraction that al-

lows for dynamic entity migration to balance proces-

sor, memory or network load

hardware-oriented benefits

portability - pure Java; “runs everywhere”

cost - runs on COTS clusters (NOW, grid, etc.), as well as

more specialized architectures

Chapter 4

Building a Scalable Network Simulator
As a validation of the virtual machine-based approach, I have constructed SWANS,

a Scalable Wireless Ad hoc Network Simulator, atop the JiST platform. Note,

however, that JiST is a general-purpose discrete event simulation engine, and that

nothing within its design is specific to the simulation of wireless networks. This ap-

plication domain was selected primarily because it would produce a useful research

tool: existing wireless network simulation tools are not sufficient for current re-

search needs. Other related and applicable areas of recent research interest include

overlay networks [5] and peer-to-peer applications [102, 112, 94, 89].

4.1 Background

Wireless networking research is fundamentally dependent upon simulation. An-

alytically quantifying the performance and complex behavior of even simple pro-

tocols on a large scale is often imprecise. On the other hand, performing actual

experiments is onerous: acquiring hundreds of devices, managing their software

and configuration, controlling a distributed experiment and aggregating the data,

possibly moving the devices around, finding the physical space for such an experi-

ment, isolating it from interference and generally ensuring ceteris paribus, are but

some of the difficulties that make empirical endeavors daunting. Consequently, the

majority of publications in this area are based entirely upon simulation.

At a minimum, one would like to simulate networks of many thousands of nodes.

However, even though a few parallel discrete event simulation environments have

been shown to scale to networks of beyond 104 nodes, slow sequential network sim-

57

58

ulators remain the norm [92]. In particular, most published ad hoc network results

are based on simulations of few nodes only (usually fewer than 500 nodes), for

a short duration, and over a small geographical area. Larger simulations usually

compromise on simulation detail. For example, some existing simulators simulate

only at the packet level without considering the effects of signal interference. Oth-

ers reduce the complexity of the simulation by curtailing the simulation duration,

reducing the node density, or restricting mobility. My goal in building SWANS is

to improve the state of the art in this regard.

The two most popular simulators in the wireless networking space are ns2 and

GloMoSim. The ns2 network simulator [70] has a long history with the network-

ing community, is widely trusted, and has been extended to support mobility and

wireless networking protocols. It is built as a monolithic, sequential simulator,

in the library-systems simulator design. ns2 uses a clever “split object” design,

which allows Tcl-based script configuration of C-based object implementations.

This approach is convenient for users. However, it incurs a substantial memory

overhead and increases the complexity of simulation code. Researchers have ex-

tended ns2 to conservatively parallelize its event loop [93]. However, this technique

has proved beneficial primarily for distributing ns2’s considerable memory require-

ments. Based on numerous published results, it is not easy to scale ns2 beyond a

few hundred simulated nodes. Recently, simulation researchers have shown ns2 to

scale, with difficulty and substantial hardware resources, to simulations of a few

thousand nodes [92].

GloMoSim [111] is a newer simulator written in Parsec [11], a highly-optimized

C-like simulation language. GloMoSim has recently gained popularity within the

wireless ad hoc networking community. It was designed specifically for scalable

59

simulation by explicitly supporting efficient, conservatively parallel execution with

lookahead. The sequential version of GloMoSim is freely available. The conserva-

tively parallel version has been commercialized as QualNet. Due to Parsec’s large

per-entity memory requirements, GloMoSim implements a technique called “node

aggregation,” wherein the state of multiple simulation nodes are multiplexed within

a single Parsec entity. While this effectively reduces memory consumption, it in-

curs a performance overhead and also increases code complexity. Unfortunately,

the aggregation of state also renders speculative execution techniques impractical,

as has been noted by the authors. GloMoSim has been shown to scale to 10,000

nodes on large, specialized multi-processor machines.

4.2 Design highlights

The SWANS software is organized as independent software components that can

be composed to form complete wireless simulations, as shown in Figure 4.1. Its ca-

pabilities are similar to ns2 [70] and GloMoSim [111], two popular wireless network

simulators. There are components that implement different types of applications;

networking, routing and media access protocols; radio transmission, reception and

noise models; signal propagation and fading models; and node mobility models. In-

stances of each component type are shown italicized in the figure. A more detailed

description of the various SWANS components can be found in Appendix B.

Notably, the development of SWANS has been relatively painless. Since JiST

inter-entity event creation and delivery is implicit, as well as event garbage collec-

tion and typing, the code is compact and intuitive. Components in JiST consume

less than half of the code (in uncommented line counts) of comparable compo-

60

�

�

�

�

Application
ConstBitRate

Transport
UDP

Network
IPv4

MAC
802.11b

Radio
NoiseAdd.

Mobility
RandWayPt.

Routing
ZRP

N
od

e

FadingFreespacePathloss Raleigh

Field 2D

N
od

e

N
od

e

N
od

e

. . . .

FreespaceRaleigh2D

Field

Field
FreespaceRaleigh2D

N
od

e

N
od

e

N
od

e
. . . .

Field
FreespaceRaleigh2D

N
od

e

N
od

e

N
od

e

.

N
od

e

N
od

e

.

The SWANS simulator consists of event-driven components that can be configured

and composed to form a meaningful wireless network simulation. Different classes

of components are shown in a typical arrangement together with specific instances

of component implementations in italics.

Figure 4.1: The SWANS component architecture.

61

nents in GloMoSim, which are already significantly smaller than their counterpart

implementations in ns2.

Every SWANS component is encapsulated as a JiST entity: it stores it own

local state and interacts with other components via their exposed event interfaces.

SWANS contains components for constructing a node stack, as well components

for a variety of mobility models and field configurations. This pattern simplifies

simulation development by reducing the problem to one of creating relatively small,

event-driven components. And, unlike the design of ns2 and GloMoSim, it explic-

itly partitions the simulation state and the degree of inter-dependence between

components, allows components to be readily interchanged with suitable alternate

implementations of the common interfaces, and for each simulated node to be in-

dependently configured. Finally, it also confines the simulation communication

pattern. For example, Application or Routing components of different nodes

cannot communicate directly. They can only pass messages along their own node

stacks.

Consequently, the elements of the simulated node stack above the Radio layer

become trivially parallelizable and may be distributed with low synchronization

cost. In contrast, different Radios do contend (in simulation time) over the shared

Field entity and raise the synchronization cost of a concurrent simulation exe-

cution. To reduce this contention in a distributed simulation, the simulated field

may be partitioned into non-overlapping, cooperating Field entities along a grid.

It is important to note that, in JiST, communication among entities is very

efficient. The design incurs no serialization, copy, or context-switching cost among

co-located entities, since the Java objects contained within events are passed along

by reference via the simulation time kernel. Simulated network packets are actu-

62

ally a chain of nested objects that mimic the chain of packet headers added by

the network stack. Moreover, since the packets are timeless by design, a single

broadcasted packet can be safely shared among all the receiving nodes and the

very same object sent by an Application entity on one node will be received at

the Application entity of another node. Similarly, if one uses TCP in the node

stack, then the very same object will also be referenced in the sending node’s TCP

retransmit buffer. This design conserves memory, which, in turn, allows for the

simulation of larger network models.

Dynamically created objects such as packets can traverse many different control

paths within the simulator and can have highly variable lifetimes. The account-

ing for when to free unused packets is handled entirely by the garbage collector.

This not only greatly simplifies the memory management protocol for packets, but

also eliminates a common source of memory leaks that can accumulate over long

simulation runs.

The partitioning of node functionality into individual, fine-grained entities pro-

vides an additional degree of flexibility for distributed simulations. The entities

can be vertically aggregated, as in GloMoSim, which allows communication along

a network stack within a node to occur more efficiently. However, the entities can

also be horizontally aggregated to allow communication across nodes to occur more

efficiently. In JiST, this reconfiguration can happen without any change to the en-

tities themselves. The distribution of entities across physical hosts running the

simulation can be changed dynamically in response to simulation communication

patterns and it does not need to be homogeneous.

63

4.3 Embedding Java-based network applications

SWANS has a unique and important advantage over existing network simulators. It

can run regular, unmodified Java network applications, such as web servers, peer-

to-peer applications, and application-level multicast protocols, over a simulated

network. These applications do not merely send packets to the simulator from

other processes. They operate in simulation time within the same JiST process

space, allowing far greater scalability. As another example, one could perform a

similar transformation on Java-based database engines or file-system applications

to model their I/O performance within a disk simulator.

This integration is achieved via a special AppJava SWANS application entity

designed to be a harness for Java networking applications, inserting an additional

rewriting phase into the JiST kernel that substitutes SWANS socket implementa-

tions for any of the Java counterparts found within the application. These SWANS

sockets have identical semantics, but send packets through the simulated network.

Specifically, the input and output methods are still blocking events (see section 3.5).

And, to support these blocking semantics, JiST automatically modifies the neces-

sary application code into continuation-passing style, allowing the application to

operate within the event-oriented simulation time environment.

4.4 Efficient signal propagation using hierarchical binning

Finally, modeling signal propagation within the wireless network is strictly an

application-level issue, unrelated to JiST performance. However, doing so effi-

ciently is essential for scalable wireless simulation. When a simulated radio entity

transmits a signal, the SWANS Field entity must deliver that signal to all radios

64

that could be affected, after considering fading, gain, and path loss. Some small

subset of the radios on the field will be within reception range and a few more

radios will be affected by the interference above some sensitivity threshold. The

remaining majority of the radios will not be tangibly affected by the transmission.

ns2 and GloMoSim implement a näıve signal propagation algorithm, which uses

a slow, O(n), linear search through all the radios to determine the node set within

the reception neighborhood of the transmitter. This clearly does not scale as the

number of radios increases. ns2 has recently been improved with a grid-based

algorithm [73]. I have implemented both of these in SWANS. In addition, SWANS

has a new, more efficient algorithm that uses hierarchical binning. The spatial

partitioning imposed by each of these data structures is depicted in Figure 4.2.

In the grid-based or flat binning approach, the field is sub-divided into a grid of

node bins. A node location update requires constant time, since the bins divide the

field in a regular manner. The neighborhood search is then performed by scanning

all bins within a given distance from the signal source. While this operation is also

of constant time, given a sufficiently fine grid, the constant is very sensitive to the

chosen bin size: bin sizes that are too large will capture too many nodes and thus

not serve their search-pruning purpose; bin sizes that are too small will require the

scanning of many empty bins, especially at lower node densities. A reasonable bin

size is one that captures a small number of nodes per bin. Thus, the bin size is

a function of the local radio density and the signal propagation radius. However,

these parameters may change in different parts of the field, from radio to radio,

and even as a function of time as in the case of power-controlled transmissions, for

example.

65

�

�

	linear lookup flat binning hierarchical binning

Efficient signal propagation is critical for wireless network simulation performance.

Hierarchical binning of radios on the field allows location updates to be performed

in expected amortized constant time and the set of receiving radios to be computed

in time proportional to its size.

Figure 4.2: Alternative spatial data structures for radio signal propagation.

66

Hierarchical binning improves on the flat binning approach. Instead of a flat

sub-division, the hierarchical binning implementation recursively divides the field

along both the x and y-axes. The node bins are the leaves of this balanced,

spatial decomposition tree, which is of height equal to the number of divisions,

or log4(
field size

bin size
). The structure is similar to a quad-tree, except that the division

points are not the nodes themselves, but rather fixed coordinates. Note that the

height of the tree changes only logarithmically with changes in the bin or field size.

Furthermore, since nodes move only a short distance between updates, the expected

amortized height of the common parent of the two affected node bins is O(1). This,

of course, is under the assumption of a reasonable node mobility that keeps the

nodes uniformly distributed. Thus, the amortized cost of updating a node location

is constant, including the maintenance of inner node counts. When scanning for

node neighbors, empty bins can be pruned during the spatial descent. Thus, the

set of receiving radios can be computed in time proportional to the number of

receiving radios. Since, at a minimum, SWANS will need to simulate delivery

of the signal at each simulated radio, the algorithm is asymptotically as efficient

as scanning a cached result, as proposed in [21], even assuming perfect caching.

But, the memory overhead of hierarchical binning is minimal. Asymptotically, it

amounts to limn→∞

∑log4n

i=1

n
4i = n

3
. The memory overhead for function caching is

also O(n), but with a much larger constant. Furthermore, unlike the cases of flat

binning or function caching, the memory accesses for hierarchical binning are tree

structured and thus exhibit better locality.

67

4.5 Summary

The SWANS simulator runs over JiST, combining the traditional systems-based

(e.g., ns2) and languages-based (e.g., GloMoSim) approaches to simulation con-

struction. SWANS is able to simulate much larger networks and has a number of

other advantages over existing tools. The JiST design is leveraged within SWANS

to:

• achieve high simulation throughput: Simulation events among the various

entities, such as packet transmissions, are performed with no memory copy

and no context switch. The system also continuously profiles running sim-

ulations and dynamically performs code inlining, constant propagation and

other important optimizations, even across entity boundaries. This is im-

portant, because many stable simulation parameters are not known until the

simulation is running. Greater than 10× speedups have been observed.

• save memory: Memory is critical for simulation scalability. Automatic gar-

bage collection of events and entity state not only improves robustness of

long-running simulations by preventing memory leaks, it also saves memory

by facilitating more sophisticated memory protocols. For example, network

packets are modeled as immutable objects, allowing a single copy to be shared

across multiple nodes. This saves the memory (and time) of multiple packet

copies on every transmission. A different example of memory savings in

SWANS is the use of soft references for storing cached computations, such

as routing tables. These routing tables can be automatically collected, as

necessary, to free up memory.

68

• run standard Java applications: SWANS can run existing Java network ap-

plications over the simulated network without modification. The network

application is automatically transformed to use simulated sockets and then

into a continuation-passing style around blocking socket operations. The

original network applications are run within the same process as SWANS

and JiST, which increases scalability by eliminating the considerable over-

head of process-based isolation.

In addition to the simulator design, it is also essential to model wireless signal

propagation efficiently at the application level, because this computation is per-

formed on every packet transmission. The hierarchical binning data structure is an

improvement over the traditional flat binning approach that allows node location

updates to be performed in expected amortized constant time and the receiver

node set to be computed in time proportional to the number of receivers.

The combination of these attributes leads to a surprisingly efficient network

simulator. A performance evaluation of JiST and SWANS follows in the next

chapter.

Chapter 5

JiST and SWANS Performance
Conventional wisdom regarding language performance [9] argues against imple-

menting a simulation platform in Java. In fact, the vast majority of existing simu-

lation systems have been written in C and C++, or their derivatives. Nevertheless,

the results in this chapter show that JiST and SWANS perform surprisingly well:

aggressive profile-driven optimizations combined with the latest Java runtimes re-

sult in a high-performance simulation system. SWANS is compared with the two

most popular ad hoc network simulators: ns2 and GloMoSim. These were se-

lected because they are widely used, freely available sequential network simulators

and designed in the systems-based and language-based approaches, respectively.

Both macro-benchmark results, running full SWANS simulations, as well as micro-

benchmark results, highlighting the throughput and memory advantages of JiST,

are shown.

Unless otherwise noted, the following measurements were taken on a 2.0 GHz

Intel Pentium 4 single-processor machine with 512 MB of RAM and 512 KB of

L2 cache, running the version 2.4.20 stock Redhat 9 Linux kernel with glibc v2.3.

I used the publicly available versions of Java 2 JDK (v1.4.2), Parsec (v1.1.1),

GloMoSim (v2.03), and ns2 (v2.26). Each data point presented represents an

average of at least five runs for the shorter time measurements. All tests were also

performed on a second machine – a more powerful and memory rich dual-processor

– giving identical absolute memory results and relative results for throughput (i.e.,

scaled with respect to processor speed).

69

70

5.1 Macro-benchmarks

In the first experiment, JiST is benchmarked running a full SWANS ad hoc wire-

less network simulation. SWANS was configured to simulate an ad hoc network

of nodes running a UDP-based beaconing node discovery protocol (NDP) applica-

tion. Node discovery protocols are an integral component of many ad hoc network

protocols and applications [46, 57]. Also, this experiment is representative both

in terms of both code coverage and network traffic: it utilizes the entire network

stack and transmits over every link in the network every few seconds. However, the

experiment is still simple enough to provide high confidence of simulating exactly

the same operations across the different platforms (SWANS, GloMoSim and ns2),

which permits comparison and is difficult to achieve with more complex protocols.

Finally, the simulation results were validated using analytical estimates.

The following identical scenario was constructed in each of the simulation plat-

forms. The application at each node maintains a local neighbor table and beacons

every 2 to 5 seconds, chosen from a uniform random distribution. Each wireless

node is placed randomly in the network coverage area and moves with random-

waypoint mobility [57] at speeds of 2 to 10 meters per second selected at random

and with pause times of 30 seconds. Mobility in ns2 was turned off, because

the pre-computed trajectories resulted in excessively long configuration times and

memory consumption. Each node is equipped with a standard radio configured

with typical 802.11b signal strength parameters. The simulator accounts for free-

space path loss with ground reflection and Rayleigh fading. I ran simulations with

widely varying numbers of nodes, keeping the node density constant, such that

each node transmission is received, on average, by 4 to 5 nodes and interferes with

71

approximately 35 others. Above each radio, there is a stack of 802.11b MAC, IPv4

network, UDP transport, and NDP application entities.

This network model was run for 15 simulated minutes, measuring the overall

memory and time required. The memory measurements include the base process

memory, the memory overhead for simulation entities, and all the simulation data

at the beginning of the simulation. The time measurements include the simulation

setup time, the event processing overheads, and the application processing time.

The throughput results are plotted both on log-log and on linear scales in

Figure 5.1. As expected, the simulation times are quadratic functions of n, the

number of nodes, when using the näıve signal propagation algorithm. Even without

node mobility, ns2 is highly inefficient. SWANS outperforms GloMoSim by a

factor of 2. SWANS-hier uses the improved hierarchical binning algorithm to

perform signal propagation instead of scanning through all the radios. As expected,

SWANS-hier scales linearly with the number of nodes.

The memory footprint results are plotted in Figure 5.2 on log-log scale. JiST

is more efficient than GloMoSim and ns2 by almost an order and two orders of

magnitude, respectively. This allows SWANS to simulate much larger networks.

The memory overhead of hierarchical binning is asymptotically negligible. Selected

data points are tabulated in Table 5.1.

Next, SWANS was tested with some very large networks simulations, using a

dual-processor 2.2GHz Intel Xeon machine (though only one processor was used)

with 2GB of RAM running Windows 2003. The results are plotted in Figure 5.3

on a log-log scale. Both the näıve propagation algorithm and hierarchical binning

are shown. One can observe linear behavior for the latter in all simulations up to

networks of one million nodes. The 106 node simulation consumed just less than

72

100 1000 10000 100000
1s

10s

1m

10m

1h

10h
Time for 15 minutes NDP simulation

network size (nodes)

ti
m

e

SWANS (scan)
GloMoSim
ns2
SWANS (hier)

(a) log-log scale

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120
Time for 15 minutes NDP simulation

network size (nodes)

ti
m

e
(i

n
 m

in
u

te
s)

SWANS (scan)
GloMoSim
ns2
SWANS (hier)

(b) linear scale

Figure 5.1: SWANS significantly outperforms both ns2 and GloMoSim in simula-

tions of the node discovery protocol.

73

10 100 1000 10000 100000 1e+06
0.1

1

10

100

1000
Memory for NDP simulation

network size (nodes)

m
em

o
ry

 c
o

n
su

m
ed

 (
in

 M
B

)

SWANS (scan)
GloMoSim
ns2
SWANS (hier)

Figure 5.2: SWANS can simulate larger network models due to its more efficient

use of memory.

10 10^2 10^3 10^4 10^5 10^6
1s

10s

1m

10m

1h

10h
Time for 2 minutes NDP simulation

network size (nodes)

ti
m

e

SWANS (hier)
SWANS (scan)

Figure 5.3: SWANS scales to networks of 106 wireless nodes. The figure shows the

time for a sequential simulation of a node discovery protocol in a wireless ad hoc

network running on a commodity machine.

74

Table 5.1: Select data points showing SWANS time and memory performance,

relative to GloMoSim and ns2, running node discovery protocol simulations.

nodes simulator time memory

500 SWANS 54 s 700 KB

GloMoSim 82 s 5759 KB

ns2 7136 s 58761 KB

SWANS-hier 43 s 1101 KB

5,000 SWANS 3250 s 4887 KB

GloMoSim 6191 s 27570 KB

SWANS-hier 430 s 5284 KB

50,000 SWANS 312019 s 47717 KB

SWANS-hier 4377 s 49262 KB

75

1GB of memory on initial configuration, ran with an average footprint of 1.2GB

(fluctuating due to delayed garbage collection), and completed within 5 1

2
hours.

This exceeds previous ns2 and GloMoSim results by two orders of magnitude, using

the same commodity hardware.

Finally, SWANS was tested with some large network simulations of an actual

routing protocol, ZRP. The ZRP entity in each node stack stores information about

neighbors, zone-wide link state, and routes. This clearly increases the per-node

memory requirements. Figure 5.4 shows the time and memory required to simulate

different size networks at a fixed density of 10 neighbors per node. It is not clear

that such a large flat ad hoc network is meaningful, except to exhibit SWANS scal-

ability. However, one could certainly simulate many smaller, connected flat ad hoc

networks with comparable workload. The memory requirements grow linearly with

the size of the network. The time required grows only slightly faster than linearly

due to garbage collection overhead (using default GC parameters).

During the bordercast evaluation performed for chapter 6, it certainly helped to

have an average simulation running time well below 15 minutes across the 4000+

simulations that were needed. Using a pool of between 10 to 40 desktop machines,

coordinated using a poor-man’s prioritized batch queuing system, allowed for rapid

and continuous collection of simulation results.

5.2 Event throughput

Having presented macro-benchmark results, the emphasis will now shift to micro-

benchmarks: event processing throughput, memory consumption for both simula-

tion entities and events, and the context-switching overhead. High event through-

put is essential for scalable discrete event simulation. Thus, in the following micro-

76

10 10^2 10^3 10^4 10^5 10^6
1s

10s

1m

10m

1h

10h
Large ZRP simulations: t=120s, neighbors=10

network size (nodes)

ti
m

e

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

m
em

o
ry

 (
in

 G
B

)

running time average memory

Figure 5.4: SWANS simulates up to 500,000 nodes at a density of 10 neighbors

per node, each running ZRP, on a 2.8GHz machine with 4GB of memory.

Table 5.2: Time and memory to run ZRP simulations in SWANS.

nodes time avg.memory max.memory

10,000 3m57s 72MB 94MB

100,000 41m36s 367MB 476MB

500,000 4h50m 1.63GB 1.9GB

77

benchmark, the performance of each of the simulation engines was measured in

performing a tight simulation event loop. The simulations begin at time zero, with

an event scheduled to do nothing but schedule another identical event in the sub-

sequent simulation time step. Each simulation runs for n simulation time quanta,

over a wide range of n, measuring the actual time elapsed. Note that, in perform-

ing these no-op events, any variations due to application-specific processing are

eliminated, and one is able to observe just the overhead of the underlying event

processing for each of the simulator designs.

Equivalent and efficient benchmark programs were written in each of the sys-

tems. The implementation of each is briefly described. The JiST program looks

much like the “hello world” program presented earlier. The Parsec program sends

null messages among native Parsec entities using the special send and receive

statements. The GloMoSim program considers the overhead of the node aggrega-

tion mechanism built over Parsec. It is implemented as an application component

that sends messages to itself. Both the Parsec and GloMoSim tests are compiled

using pcc -O3, the most optimized Parsec compiler setting. ns2 utilizes a split

object model, allowing method invocations from either C or Tcl. The majority

of the performance critical code, such as packet handling, is written in C, leaving

mostly configuration operations for Tcl. However, there remain some important

components, such as node mobility, that depend on Tcl along the critical path.

Consequently, I ran two tests. The ns2-C and ns2-Tcl tests correspond to events

scheduled from either of the languages. ns2 simulation performance lies some-

where between these two widely divergent values, dependent on how frequently

each language is employed during a given simulation. Finally, the reference test

provides a computational lower bound. It is a program, written in C and com-

78

piled with gcc -O3, that merely inserts and removes elements from an efficient

implementation of an array-based priority queue. Program listings are provided in

Appendix C.

The results are plotted in Figure 5.5, as log-log and linear scale plots. As ex-

pected, all the simulations run in time linear with respect to the number of events,

n. A counter-intuitive result is that JiST out-performs all the other systems, in-

cluding the compiled ones. It also comes within 30% of the reference measure of

the computational lower bound, even though it is written in Java. This achieve-

ment is clearly due to the impressive JIT dynamic compilation and optimization

capabilities of the modern Java runtime. Furthermore, these optimizations can

actually be seen as a kink in the JiST curve during the first fraction of a second of

simulation. To confirm this, JiST was warmed with 106 events (or, for two tenths

of a second) and the kink disappears. The linear-scale plot shows that the time

spent on dynamic optimizations is negligible.

Table 5.3 shows the time taken to perform 5 million events in each of the

measured simulation systems and also those figures normalized against both the

reference program and JiST performance. JiST is twice as fast as both Parsec

and ns2-C. GloMoSim and ns2-Tcl are one and two orders of magnitude slower,

respectively.

5.3 Context switching

Alongside event throughput, it is important to ensure that inter-entity message

passing and context switching scales well with the number of entities. For simplicity

of scheduling, many (inefficient) parallel simulation systems utilize kernel threads

or processes to model entities, which can lead to severe degradation with scale.

79

0.1 1 10 100
0.01

0.1

1

10

100
Simulation event throughput

of events (in millions)

ti
m

e
(s

ec
o

n
d

s)

reference
JiST (cold)
JiST (warm)
Parsec
GloMoSim
ns2 (C)
ns2 (Tcl)

(a) log-log scale

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Simulation event throughput

of events (in millions)

ti
m

e
(s

ec
o

n
d

s)

reference
JiST (cold)
Parsec
ns2 (C)

(b) linear scale

Figure 5.5: JiST has higher event throughput and comes within 30% of the refer-

ence lower bound program. The kink in the JiST curve in the first fraction of a

second of simulation is evidence of JIT compilation and optimization at work.

80

The systems presented do not exhibit this problem. ns2 models events in

single global event list. Parsec, and therefore also GloMoSim, models entities

using logical processes implemented in user space and uses an efficient simulation

time scheduler. JiST implements entities as concurrent objects and also uses an

efficient simulation time scheduler. The context switching overheads of both Parsec

and JiST were empirically measured. They are negligible and do not represent a

scalability constraint on the number of entities in the simulation.

5.4 Memory utilization

Another important resource that may limit scalability is memory. In many simula-

tions, memory is the critical scalability-limiting factor, since it establishes an upper

bound on the size of the simulated model. The following experiments measure the

memory consumed by simulation entities and by queued simulation events in each

of the systems. Measuring the memory usage of entities involves the allocation of

n empty entities and observing the size of the operating system process over a wide

range of n. Similarly, a large number of events are queued to measure per event

memory requirements. In the case of Java, a garbage collection sweep is performed

before requesting an internal memory count. Note also that this benchmark, as

before, measures the memory overhead imposed by the simulation system. The

entities and events are empty. They do not carry any application data.

The entity and event memory results are plotted on log-log scales in Figure 5.6.

The base memory footprint of each of the systems is less than 10 MB. Asymptoti-

cally, the process footprint increases linearly with the number of entities or events,

as expected. (a) – JiST performs well with respect to memory requirements for

simulation entities. It performs comparably with GloMoSim, which uses node

81

0.1 1 10 100 1000
0.1

1

10

100

1000
Simulation entity memory overhead

of entities (in thousands)

m
em

o
ry

 o
ve

rh
ea

d
 (

M
b

yt
es

)

JiST
Parsec
GloMoSim
ns2

(a) Memory per entity, log-log scale

0.1 1 10 100 1000 10000
0.1

1

10

100

1000
Simulation event memory overhead

of queued events (in thousands)

m
em

o
ry

 o
ve

rh
ea

d
 (

M
b

yt
es

)

JiST
Parsec/GloMoSim
ns2 *

(b) Memory per event, log-log scale

Figure 5.6: JiST allocates entities efficiently: comparable to GloMoSim at 36 bytes

per entity, and over an order of magnitude less that Parsec or ns2. JiST allocates

events efficiently: comparable to ns2 (in C) at 36 bytes per queued event and half

the size of events in Parsec and GloMoSim.

82

Table 5.3: Time to perform 5 million events, normalized against both the baseline

and JiST.

5× 106 events time (sec) vs. reference vs. JiST

reference 0.738 1.00x 0.76x

JiST 0.970 1.31x 1.00x

Parsec 1.907 2.59x 1.97x

ns2-C 3.260 4.42x 3.36x

GloMoSim 9.539 12.93x 9.84x

ns2-Tcl 76.558 103.81x 78.97x

Table 5.4: Per entity and per event memory overhead along with the system mem-

ory overhead for a simulation scenario of 10,000 nodes, i.e. without including

memory for any simulation data. (*) Note that the ns2 split object model will

affect its memory footprint more adversely than other systems when simulation

data is added.

memory entity event 10K nodes sim.

JiST 36 B 36 B 21 MB

GloMoSim 36 B 64 B 35 MB

ns2 544 B 40 B* 74 MB*

Parsec 28536 B 64 B 2885 MB

83

aggregation specifically to reduce Parsec’s memory consumption. A GloMoSim

“entity” is merely a heap-allocated object containing an aggregation identifier and

an event-scheduling priority queue. In contrast, each Parsec entity contains its

own program counter and logical process stack1. In ns2, the benchmark program

allocates the smallest split object possible, an instance of TclObject, responsi-

ble for binding values across the C and Tcl memory spaces. JiST provides the

same dynamic configuration capability without requiring the memory overhead of

split objects (see section 3.2). (b) – JiST also performs well with respect to event

memory requirements. Though they store slightly different data, the C-based ns2

event objects are approximately the same size. On the other hand, Tcl-based ns2

events require the allocation of a new split object per event, thus incurring the

larger memory overhead above. Parsec events require twice the memory of JiST

events. Presumably, Parsec uses some additional space in the event structure for

its event scheduling algorithm. This could not be validated, since source code was

not available.

The memory requirements per entity, mementity , and per event, memevent, in

each of the systems are tabulated in Table 5.4. The table also shows the memory

overhead within each system for a simulation of 10,000 nodes, assuming approxi-

mately 10 entities per node and an average of 5 outstanding events per entity. In

other words, memsim = 104 × (10×mementity + 50×memevent).

Note that these figures do not include the fixed memory base for the process nor

the actual simulation data, thus showing the overhead imposed by each approach.

Note also that adding simulation data would doubly affect ns2, since it stores data

in both the Tcl and C memory spaces. Moreover, Tcl encodes this data internally

1Minimum stack size allowed by Parsec is 20 KB.

84

as strings. The exact memory impact thus varies from simulation to simulation.

As a point of reference, regularly published results of a few hundred wireless nodes

occupy more than 100 MB, and simulation researchers have scaled ns2 to around

1,500 non-wireless nodes using a 1 GB process [93, 76].

5.5 Performance summary

JiST out-performs ns2, GloMoSim, and Parsec both in time and space. Each

system is discussed, in turn, below. Table 5.5 summarizes the important design

decisions in each of the systems that bear most significantly on these performance

results.

Parsec runs very quickly and there are a number of reasons for this. It is

compiled, not interpreted, and uses a modified gcc compiler to produce highly

optimized binaries. It also uses non-preemptive logical processes to avoid system

switching overhead: a Parsec logical context switch is implemented efficiently using

only a setjmp and a stack pointer update, like a user-level thread switch. The

process-oriented model, however, exacts a very high memory cost per entity, since

each entity must store a program counter and its stack.

GloMoSim remedies the Parsec per entity overhead by inserting a level of in-

direction into the message dispatch path and aggregating multiple nodes into a

single entity. While this reduces the number of entities in the system, the indirec-

tion comes with a performance penalty. It also eliminates the transparency and

many of the advantages inherent to a language-based approach. For example, the

aggregation of state renders speculative execution techniques impractical.

ns2 is a monolithic, sequential engine, so message queuing and dispatch are

efficient. However, ns2 employs a split object model across C and Tcl to facilitate

85

dynamic simulation configuration. This not only forces a specific coding pattern,

it also comes at a performance cost of replicating data between the two memory

spaces. More importantly, it exacts a high memory overhead. The ns2 code written

in C still executes quickly, but the Tcl-based functionality is almost two orders of

magnitude slower. Additionally, both ns2 and GloMoSim suffer performance loss

from their approaches to simulation configuration that eliminates opportunities for

static optimizations, as discussed in section 3.2.

JiST uses a concurrent object model of execution and thus does not require

node aggregation. Since entities are objects all within the same heap, as opposed

to isolated processes, the memory footprint is small. There is also no context

switching overhead on a per event basis and dynamic Java bytecode compilation

and optimization result in high computational throughput. Dynamic optimizations

can even inline simulation code into the language-based kernel. Since Java is a

dynamic language, JiST does not require a split object model for configuration.

Instead, one can use reflection to directly observe or modify the same objects used

to run the simulation. This both eliminates the performance gap and the additional

memory requirements.

5.6 Rewriting and annotation overhead

In addition to runtime performance, it is important to evaluate the rewriter it-

self, which transforms the various JiST tags and instructions embedded within

the compiled simulation program into code with the appropriate simulation time

semantics. For ease-of-use, the JiST rewriter is implemented as a dynamic class

loader. It uses the Byte-Code Engineering Library [31] to automatically modify

the simulation program bytecode as it is loaded by the JiST bootstrapper into

86

Table 5.5: Summary of design characteristics that bear most significantly on sim-

ulation performance.

simulator runtime environment compilation

ns2/PDNS Tcl, C split-language objects

GloMoSim Parsec static optimizations

SWANS JiST static and dynamic optimizations

simulator environment reuse entity memory model

ns2/PDNS none no isolation

GloMoSim language process-based isolation

SWANS language and runtime language-based isolation

Table 5.6: Code size metrics for the JiST and SWANS codebase.

files classes lines semi bytecode

JiST 29 117 14251 3526 355 KB

minisim 16 37 2438 724 56 KB

SWANS 85 221 29157 6586 514 KB

driver 15 36 4549 1739 152 KB

146 414 50612 12637 1084 KB

87

the Java virtual machine. Since the rewriting is performed only once, it could, if

necessary, also be implemented as an offline process. Thus, rewriting speed is not a

critical metric. Nevertheless, JiST can load, verify, and rewrite all of the SWANS

classes in approximately 30 seconds, even though only a fraction of the compo-

nents are ever actually used in a given simulation. As a point of comparison, the

rewrite time is less than the javac compilation time for SWANS. Moreover, the

on-disk JiST rewriter cache entirely eliminates this overhead on subsequent runs.

Some code size statistics are presented in Table 5.6. Note that SWANS is already

far larger than JiST and its size will increase as more simulation components are

implemented.

The rewriter processing increases the size of the simulation class files. As

shown in Figure 5.7, this overall increase is not considerable. The greatest relative

increase is concentrated among entity classes, because they are usually just small

wrappers and have accessor methods, stub fields, self-referencing separators, and

various runtime helper methods added to them during rewriting. Furthermore,

the majority of the increase in all classes is concentrated in the constant pool,

which does not affect performance. Most importantly, the increase to the code

segment of non-entity classes, which is the bulk of the simulation model, is around

3%. The majority of this code is for marshaling event parameters and converting

Java primitive types to and from their object counterparts for reflection-based

invocation.

Finally, it is instructive to consider the impact of the various JiST API calls

and annotations at the source code level. Table 5.8 shows how infrequently the

various JiST calls and annotations appear within the SWANS source code. The

most popular calls, as expected, are getTime, sleep and proxy. The Continuable

88

and Continuation annotations are mostly concentrated in the SWANS simulated

socket and I/O stream classes. Even so, the total count of all JiST references

throughout the code represents far less than 1% of the codebase, when measured

against the total line count. The vast majority of the SWANS codebase is plain

Java code completely without reference to JiST.

5.7 Language alternatives

Given that JiST is a Java-based system, it is natural to question whether Java is

an appropriate language for this work and whether similar benefits could not be

attained using other languages. Java has a number of advantages. It is a standard,

widely deployed language, not specific to writing simulations. Consequently, the

Java platform boasts a large number of optimized virtual machine implementa-

tions across many hardware and software configurations, as well as a large num-

ber of compilers and languages [104] that target this execution platform. Java

is an object-oriented language and it supports object reflection, serialization, and

cloning, features which facilitate reasoning about the simulation state at runtime.

The intermediate bytecode representation conveniently permits instrumentation of

the code to support the simulation time semantics. Type-safety and garbage col-

lection greatly simplify the writing of simulations by addressing common sources

of error.

Some of these properties exist in other languages as well, and they would be

suitable candidates for a JiST-like transformation. Based on the experience of

implementing JiST, the most suitable candidates include Smalltalk, C#, Ruby,

and Python. However, the latter two may not provide adequate performance.

89

Table 5.7: Rewriter processing increases class sizes. The figures shown above are

the increases in bytes (and as a percentage), from the processing of the complete

SWANS code-base. Regular objects, which contain the majority of the code, are

hardly affected.

Object, ∆% Timeless, ∆% Entity, ∆% total, ∆%

base size (bytes) 452K 237K 14K 703K

total increase 32K 7.3 25K 10.7 13K 98.1 72K 10.3

constant pool 18K 4.0 16K 7.0 10K 71.5 45K 6.4

code, etc. 14K 3.2 8K 3.7 3K 26.6 27K 3.9

Table 5.8: Counts of JiST API calls and annotations that appear within the

SWANS codebase.

annotation / system call count

Continuable 25

Continuation 60

Proxiable 8

Timeless 8

createChannel() 3

getTime() 27

proxy() 22

proxyMany() 1

run() 3

sleep() 56

TOTAL 213

90

null int double string
0

1

2

3

4

5

6

7

8
Throughput by event and event parameter types

event parameter types

tim
e

(s
ec

on
ds

)
fo

r
10

 m
ill

io
n

ev
en

ts

regular
proxy
continuation
proxy−cont

Figure 5.7: Manually boxing Java primitives for reflection-based invocation and

unrolling the Java stack for blocking event continuations are Java-related overheads

that could be eliminated from the performance-critical simulation event loop.

91

Java also has a number of disadvantages that are worth noting, because they

adversely affect the performance of JiST. Java primitive types require special han-

dling. They need to be manually “boxed” into their object counterparts for the

reflection-based invocation that occurs in the performance-critical event-loop, thus

incurring a relatively expensive object instantiation and requiring eventual garbage

collection. Instead, the conversion from primitive to object and back should be

performed internally by the JVM in an efficient manner, as in C#. Secondly, the

Java virtual machine does not support tail-calls. These are a common occurrence

within an event-based system and adding a bytecode instruction to assist the op-

timizer in detecting these could ensure that the proper stack discipline is used.

Finally, Java completely hides the execution stack from the programmer. There

are many applications that could benefit even from some restricted form of stack

access, even as an immutable object. In JiST, it could eliminate the performance

gap between regular and blocking simulation events.

Figure 5.7 shows the impact of primitive boxing and stack unrolling on various

JiST event types. Null events are fastest, since they do not require the instantiation

of an argument array. Events with object parameters (string) are only slightly

faster than events with primitive parameters (int and double). Proxied events

have equivalent performance to regular events, even though they add an additional

method invocation. However, this additional stack frame hurts performance in the

case of proxied-blocking events, which must disassemble the stack manually, frame

by frame. Note also that the proxying method is simply a wrapper, so it is not

touched by the CPS transformation. The JVM should certainly implement it using

a tail-call, if not entirely inline the method.

92

5.8 Summary

In this chapter, I have highlighted the performance advantages of virtual machine-

based simulation using macro and micro-benchmarks. JiST and SWANS out-

perform existing simulator alternatives both in time and space, due to fundamental

design decisions. I have also shown that the rewriter overhead at the bytecode level,

as well as the source code annotations required, are minimal.

Chapter 6

Density Independent Route Discovery
Ongoing research into dynamic, self-organizing, multi-hop wireless networks pro-

mises to improve the efficiency and coverage of wireless communication. However,

the ability to scale ad hoc networks to large numbers of nodes remains an open

problem. A number of ad hoc network routing protocols have been proposed

[57, 82, 29, 15], but their evaluation has been hindered by the capabilities of existing

simulators. The majority of the published simulation results are of networks with

sizes on the order of a few hundred nodes.

In this chapter, I analyze the Bordercast Resolution Protocol (BRP), the query

propagation component used in the Zone Routing Protocol (ZRP) framework [48].

I compute the cost of discovering a route within a flat ad hoc network and show

that one can discover a route with cost proportional only to the area of the network,

or independent of the number of network nodes. Furthermore, I show that this

is optimal and that bordercast possesses these properties. These experiments, at

the scales required to reach the appropriate conclusions, were possible due to the

performance and scalability of JiST and SWANS. Thus, this chapter provides both

a scalable networking research result as well as an example of the type and scale of

research that these tools allow. In fact, such research was the motivation behind

SWANS, which, in turn, motivated the JiST work.

6.1 Background

The recent widespread adoption of wireless communication technologies over the

last hop of packet-switched networks has greatly enhanced connectivity and en-

93

94

abled numerous new applications. There are many available standards and proto-

cols for different kinds of wireless links that can be used in wide-area, cellular, local

area, or even “personal” area networks. Each of these is optimized for a specific

point along the fundamental distance-capacity-power trade-off curves that meets

the demands of a target set of applications (Table 6.1).

Ongoing research into dynamic, self-organizing, multi-hop wireless networks,

called “ad hoc networks,” hopes to facilitate yet another stride in network connec-

tivity by improving the efficiency and coverage of wireless communication. The

idea is well known: rather than tether wireless devices to the wired world via a

single wireless hop to a base station, a device within an ad hoc network may be

connected via multiple, shorter hops across other wireless devices that function as

routers and repeaters. And, in general, the devices may also communicate with

each other and even operate in isolation, without a base station. Regardless of the

traffic pattern, since the strength of a signal dissipates faster than the square of

the distance traveled, multiple shorter wireless links can support the same band-

width capacity as a single long wireless hop using less power, a scarce resource in

mobile settings. Furthermore, the overall effective capacity of the airspace may

be increased, because these lower power, shorter range transmissions generate less

interference. Alternatively, for the same power, can one achieve greater capacity

or coverage.

Ad hoc networks have a variety of natural civil and military applications. They

are particularly useful when networking infrastructure is impossible or too costly to

install and when mobility is desired. As a benign, civil example, take a pre-existing,

unwired office building that is to be filled with computers, printers, telephones,

card readers, fire sensors, photocopiers, and many other devices that require or

95

can be enhanced with network connectivity. Assume, without loss of generality,

the use of ubiquitous 802.11 networking equipment to network them, and radio

power settings that provide an effective transmission radius of 50 meters. Using

wireless links over the last network hop alone, one can provide network connectivity

to an entire floor with (wired) base stations placed so that there exists at least one

within 50m of every device.1 The minimum number of base stations required is

proportional to the area that is to be covered.

In contrast, by utilizing multiple wireless hops and assuming sufficient density

(i.e., assuming that no device is more than 50m from at least one other device that

can already be connected), one could achieve complete connectivity for the entire

floor with just a single base station. More generally, a device can communicate with

some destination, if and only if there exists at least one route of wireless hops, all

shorter than 50m, between them. The devices may also change location over time,

and they may join and fail (or voluntarily leave) the network. Such an architecture

that does not contain long-range links and utilizes multi-hop routes across short

wireless links in an unconstrained manner is called a flat ad hoc network.

Extending this example, is it feasible to connect the whole office building to a

single point without any wired infrastructure? Is it possible, perhaps, to connect

an entire university campus or a small town using just short wireless hops among

wireless devices? The vision of extending the reach of wireless communication

in this manner is enticing. However, routing and transmitting packets efficiently

becomes increasingly difficult as the ad hoc network grows. In general, increasing

1Though wireless links are appropriate for a large class of applications, they
may not adequately replace wires for certain demanding uses. Other issues need
to be considered, such as network capacity, end-to-end latency, and security.

96

the scale of ad hoc networks to such magnitudes remains an important research

challenge.

In the remainder of this chapter, I address an important component of this

problem. Specifically, I analyze the cost of discovering a route within a flat ad hoc

network in the absence of any information about the desired destination node

except for its unique address. I show that one can discover a route with cost

proportional only to the area of the network, and independent of the number of

nodes in the network (i.e., independent of the network density). Furthermore, I

show that this is optimal: this cost is a lower bound for any possible route discovery

protocol that does not rely on additional information about the destination node. I

analyze a protocol, called bordercast, which has these characteristics and evaluate

it in simulation.

6.2 Scalability limits

The network model I shall use is that of a flat ad hoc wireless network. The

network consists of n nodes that may move around within a given area A. These

nodes are independent, unaware of their location, and randomly, but uniquely

addressed. Nodes can communicate with other nodes that are located within their

transmission radius, r. All nodes are equal participants in the network and there

is no central, coordinator node or point of failure. There is also an assumption of

a single, shared channel and, for simplicity, that all links are bi-directional.

Routing and transmitting packets efficiently over such a network becomes dif-

ficult as it grows in size. In fact, the scalability of flat ad hoc networks is funda-

mentally limited along a number of dimensions:

97

Capacity – The scalability of the effective capacity of a network depends on

many parameters, including the traffic model (i.e., how it is used) and the node

density. For a network with uniform node density, the effective capacity can grow

proportionally to the network size, under the condition that the average end-to-

end communication distance is constant. Consider, for example, the case of every

node communicating only with its neighbors. At the other extreme, if all the nodes

choose to communicate with one central node in the network, then the effective

capacity of the entire network is capped by the capacity of that central node,

regardless of the network size. The question of network capacity has been widely

investigated under numerous assumptions [45, 43, 7] and is outside the scope of

this work.

Latency – Flat wireless ad hoc networks are inherently limited in the area

that they may cover, because, without long-range wireless or wired links, the net-

work distance (in hops) between two nodes is proportional to the physical distance

between them. So, too, is the network latency of the shortest route. For in-

stance, traversing just 50km in 50m hops would require at least 1000 hops. This

is far greater than the diameter of the Internet, where an initial TTL greater than

60 hops is considered safe[34]. Thus, one should restrict the network to a physical

area, A, with diameter dr, or A ≤ π(dr)2/4, where d represents a network diameter

of reasonable magnitude, which is likely (though not necessarily) smaller than that

of the Internet. In practice, long-range network links may be used to inter-connect

such areas in a hierarchical fashion, but such a network architecture is also outside

the scope.

Discovery – Finally, a frequent operation in an ad hoc setting is to query

it for information. The information may be at one or more individual nodes, or

98

it may be a function of some subset of the network. The ideas in this chapter

are applicable to many kinds of queries, however, the focus will be on the cost of

performing a route discovery, wherein a (source) node queries the network for a

route to some destination.

6.3 Route discovery

A number of ad hoc network routing protocols have been proposed, including

DSR [57], AODV [82], OLSR [29], and TBRPF [15] among many others. Each of

these protocols is designed and optimized under different networking assumptions,

such as the expected traffic pattern and the rate of topological change in the

network. For example, the OLSR protocol is proactive in its route discovery,

which is suitable for more static networks, while AODV is reactive, and thus is

more efficient in highly mobile settings. The protocols also differ in their use of

route caches, their mechanisms for detecting route failures, and their capabilities

for maintaining routes.

However, these varied routing protocols also share certain commonalities. Most

obviously, they provide the same functionality and interface to higher layers of the

network stack, which is to furnish routes to any requested node in the network.

Secondly, at one time or another, either due to limited cache sizes, changes in

the network that invalidate existing information, or the arrival of a new query for

an unknown destination, each of these protocols is forced to send a query into

the network in search of some node or information about that desired destination

available at some other, possibly nearer node.

Flooding is a näıve query propagation protocol, whereby each node, upon re-

ceiving a query for the first time, merely rebroadcasts it, possibly with some jitter

99

to reduce the probability of collision. The algorithm for flooding is shown in Fig-

ure 6.1. Ignoring failures, every node connected to the source, receives the query at

least once and transmits it exactly once. Truncating the flood using an expanding

TTL “ring”, as in AODV and others, is merely a stop-gap measure that is useful

only when the destination node or cached information happens to exist nearby. In

general, as the number of network nodes increases, the cost of the flood increases

in proportion as well.

Having established that query propagation is a necessary element of ad hoc

network routing protocols and that flooding-based propagation is costly, one would

like to replace this protocol with a more efficient and scalable query propagation

protocol. The defining property of any propagation protocol is that it propagates

a query to all nodes that need to hear it. Thus, in the absence of any information

about the destination node, including cached information and even general location

information, a route discovery query should be propagated to all nodes that are

connected to the propagation source. But, it is certainly not necessary for every

node to transmit the query, as is the case with flooding. This observation allows

for significant improvements of many existing ad hoc network routing protocols.

When operating in dense networks, the flooding-based propagation component of

these protocols causes unnecessary transmissions and broadcast “storms.”

6.4 Optimal propagation

Given some network, G = 〈N, E〉, where N denotes the set of nodes distributed

uniformly across an area, A, and E denotes the links between them, determine the

number of transmissions, t, required to propagate a route query from some source

100

Table 6.1: Capabilities of various wireless technology options (order of magnitude)

area distance bandwidth power protocols

Wide 10 km 0.1-2 Mbps 1 W GPRS, CDMA, W-CDMA

Local 100 m 1-50 Mbps 300 mW 801.11b/a/g, Ricochet

Personal 10 m 1 Mbps 10 mW Bluetooth, Infra-Red

state
local: address
processed: set of query

Receive-Flood(q: query):
Process-Query(q)
sleep Jitter-Time()
if q /∈ processed then

processed ← processed ∪ q

Broadcast(q)

Flood(q: query):
Receive-Flood(q)

Figure 6.1: Flooding query propagation protocol

101

node, n0 ∈ N , to all the other n0−connected2 nodes, N c
n0
⊆ N . Clearly, t ≤ |N c

n0
|,

since this is the cost of flooding: each n0−connected node transmits the query

once.

However, this analysis fails to capture the spatial properties of a wireless broad-

cast. As defined above, network nodes are placed at random locations within the

limits of the ad hoc network area, A. Thus, in the worst case, one would need to

cover the entire area with query broadcasts. A single wireless broadcast can be

received over an area a = πr2 around the transmitter, where r is the transmission

radius, as defined above. Thus, even if one could place transmitters at will, one

still would need at least t ≥ (1 + ε)A/a transmitters, where ε accommodates for

the packing inefficiency of the transmission coverage circles. For convenience, let

ρ = (1 + ε)A/a.

As the size of the network is increased, by adding nodes at random locations

within A, a number of things occur. The density of the network increases in

proportion. The network becomes fully connected with high probability, so that

N c = N . And, the probability of having a node within δ distance of any chosen

transmitter point, Pδ(t) = 1− (1−πδ2/A)|N |, approaches 1. To propagate a query

over the entire area A, select transmitter points uniformly across A, such that the

distance between any two is at most r. It is possible to cover the entire area with

ρ circles of radius r. Place nodes at the centers of those circles and connect those

nodes with an additional ρ − 1 intermediate nodes. Thus, even as the number of

nodes in the network increases, one can still flood the entire network at a cost of

t ≤ 2ρ− 1 transmissions. Thus, t = Θ(A).

2Connected in the graph-theoretic sense, i.e., possibly through multiple hops.

102

The upper bound just derived may not be satisfying, since the selected trans-

mission points are not actually nodes within the original network. Therefore,

consider the dominating set over G, Ñ . (A set of nodes, Ñ , is dominating over G,

if and only if every node in G is either an element of Ñ or is a neighbor of some

node in Ñ .) The dominating number of the network, or the size of the minimum

dominating set, is γ(G) ≤ ρ. If there are any more nodes in a dominating set than

this upper bound, then at least one member node covers an area around it that

is already completely covered by the remaining nodes in the set, and that node

can be removed to form a smaller dominant set. Then, construct a minimum con-

nected dominating set, Ñ+. A connected dominating set is a dominating set with

nodes from G added to connect the existing dominating nodes, whenever those

nodes are connected in G. Thus, by construction, the number of connected com-

ponents in the connected dominating set will be equal to the number of connected

network components in G. Note, also, that by the definition of the dominating

set, the connected dominating set can be formed by adding at most 2 nodes for

every dominating node: the neighbors of the two dominating nodes being con-

nected. Thus, |Ñ+| ≤ 3|Ñ |, and the minimum connected dominating number of

G, is γ+(G) ≤ 3ρ. Finally, since the minimum connected dominating set contains

all the nodes that must transmit the query in order to completely propagate it

through G, it remains that t = Θ(A).

To summarize, the optimal number of transmissions required to propagate a

query is proportional to the area, A, of the network. It is independent of the

number of network nodes, or equivalently of the network density. This is intuitively

correct. Adding a node in an area that is already covered by an existing set of

propagating nodes, should not increase the number of transmissions required. And,

103

if the area is finite, only a finite number of nodes are required to propagate the

query across it, regardless of the number of nodes in the network that are to receive

the query.

6.5 Zones and bordercasting

In reality, the minimum connected dominating set of the network is not com-

putable. It is an NP-complete problem, even if a priori knowledge of the entire

network topology were available. Instead, one can substitute an approximate algo-

rithm that uses heuristics and only local information. The following is an overview

of the Bordercast Resolution Protocol (BRP), the query propagation component

used in the Zone Routing Protocol (ZRP) framework [48]. Bordercasting can re-

place the flooding-based query propagation used in many existing ad hoc network

routing protocols.

The bordercasting functionality depends on information about the surrounding

zone of a node. Each node has its own zone, which is defined to be the set of nodes

that are within R network hops from it. R is called the zone radius. Each node

knows about all the other nodes within its zone, as well as the links among those

nodes. The mechanism by which this zone information is collected and maintained

will be described in section 6.6. The zone radius, R, is a protocol parameter that

may change over time and need not be homogeneous across the entire network [97].

However, for simplicity of exposition, assume that it as a network-wide constant.

The border of a zone is defined as the set of nodes that are exactly R hops away.

Like flooding, the bordercast protocol propagates the query across the entire

network. However, while flooding attempts to iteratively relay the query to any

neighbors that have not heard it, the bordercast protocol seeks to iteratively relay

104

the query to any of its border nodes that have not heard it. Thus, while all

the neighbor nodes will receive the query broadcast, not all of them will need to

retransmit it on its way to the border nodes. If one considers the nodes within

the zone to be a micro-ad hoc network with area, Az = π(Rr)2, it is clear that

the cost of propagating the query across the zone is a function of its area and

not of the number of nodes within it. Therefore, because of the broadcasting

nature of wireless communications, the bordercast protocol broadcasts the query

to all its neighbors, but selects only a few to re-bordercast the message. The other

neighboring nodes are silent recipients.

It is important to understand that bordercasting does not actually attempt

to deliver the query to every node within its zone. Rather, its objective is to

relay the query only to any border nodes that have not yet received the query.

The protocol still works correctly, because each node in the network maintains

information about all the nodes within its zone and can answer queries about

them or, at the very least, forward the query directly to the desired node. Thus,

a node is covered, if and only if the query has been received by any node within

its zone. The bordercasting protocol ensures that every node in the network is

covered by the query. With larger zone radii and at higher network densities, a

significant fraction of the network may be covered without actually receiving the

propagating query.

Figure 6.2 contains the bordercast algorithm, which runs independently on ev-

ery node. A bordercast query propagation is initiated with a call to Bordercast,

and incoming messages are processed by Receive-Bordercast. The Zone and

Border functions return the zone and border node sets, respectively, around a

given node, based only on the local state.

105

type

msg := {
src: address,
targets: set of address,
query: query

}
info := { addr: address, . . . }

state

local: info

zone: {
nodes: set of info

links: set of { src: address, dst: address }
}
covered: map query to set of address

Receive-Bordercast(m: msg):
� accumulate query coverage information

covered[m.query]
∪
←− Zone(m.src)

if local /∈ m.targets then

covered[m.query]
∪
←− Zone(local.addr)

� process query and wait to avoid collision

� and hear other broadcasts

Process-Query(m.query)
sleep Jitter-Time()
� relay query to any uncovered border nodes

border ← Border(local.addr)−covered[m.query]
if border 6= ∅ then

msg ← msg {
src ← local.addr,
targets ← Select-Neighbors(border),
query ← m.query

}
Broadcast(msg)

covered[m.query]
∪
←− Zone(local.addr)

Bordercast(q: query):
msg ← msg {

src ← Null,
targets ← { local.addr }
query ← q

}
Receive-Bordercast(msg)

Figure 6.2: Bordercast query propagation protocol

106

The local state of each node consists of the zone-wide information, maintained

by a separate protocol, as well as information regarding which nodes within the

zone have already been covered by a query: coverage. This query coverage state

maintained by each each node lies at the heart of the protocol and directs its

behavior. As with flooding, a bordercasting node should transmit a query at

most once. To ensure this property, the protocol marks3 all the nodes of its zone,

including the border nodes, as covered after a query has been relayed. When all

the border nodes are covered, there is no need to relay the query. Similarly, when

a node receives a bordercast message from some neighbor it marks all the locally

known nodes in the zone of that neighbor as covered. In other words, the node

updates its local query coverage state to indicate that all nodes within its zone

that are within R hops of the sender node have been covered by the query. Thus,

the coverage state directs the query outward, toward an expanding border.

Each bordercast message contains the query to be relayed, a source address,

and a list of target addresses. The bordercast message is always broadcast and the

list of target address are always selected from among the neighbors of the sender.

If the receiving node is not one of the selected targets, it is implied that it is not

required for the query to reach the border nodes of the sender. Furthermore, by

the definition of a zone and the manner by which targets are selected, each of

receiver’s border nodes must be a border node of one of the targeted neighbors.

Thus, when a node receives a bordercast message and is not in the target set, the

protocol marks its entire zone as covered. The effect is, as above, to ensure that a

non-targeted node will remain silent, since it is not required for query propagation.

3A local operation: updates coverage in the local node state.

107

In contrast, a targeted neighbor node that receives a query is responsible for

re-bordercasting it to any of its uncovered border nodes. The protocol pauses for

a short random interval before doing so. This wait time lowers the collision proba-

bility. It also allows the node to receive other bordercasts that may be occurring at

neighbor nodes during this time. Learning that the query was processed at other

nodes, may partially or completely cover the remaining uncovered border nodes

and either reduce the number of targets required or perhaps eliminate the need to

relay the query entirely.

Finally, before broadcasting the query, the protocol must select the target

neighbors: Select-Neighbors(). For each uncovered border node, there must

be at least one neighbor chosen in the direction of that border node. In other

words, the network distance between the selected target neighbor and the uncov-

ered border node must be R − 1 hops. There may be many sets of nodes that

meet this criterion, and one would like to find the smallest such set. Since this

matching problem between closest neighbors and their uncovered border nodes is

also NP-complete, a greedy approximation is implemented. The neighbor node

that covers the greatest number of uncovered border nodes is chosen first. The

border nodes closest to the chosen target are then covered, and then the algorithm

iterates until all the border nodes have been covered. The query is then broadcast

with this list of targets.

To summarize, Figure 6.3 depicts a bordercast in progress. The zone radius is 2.

The query was initiated from node S, and arrived via G and B to node A. Note,

that node B targeted only nodes A and C with its query broadcast, in order to

reach its border node set {H, D, E}. Node F is not targeted since node A already

covers it, in addition to covering D. Thus, when F receives the query from B, it

108

processes the query, notes that its entire zone is covered (since F is not a target

of the query), and, therefore, remains silent. Similarly, G receives the query from

B and remains silent, since G has already forwarded the query (to B, in this case)

and marked all the nodes of its zone as covered. When A receives the query from

B, it locally marks all the nodes of B as covered. Covered nodes are represented

as black nodes in the figure. S is not marked, since A does not know about it. I,

J , and K are also not marked, since they lie outside the zone of B. Thus, out of

A’s border set, which is {G, H, I, J, K}, only {I, J, K} remain uncovered. Based

on this information, and assuming that no other bordercasts are heard while A

pauses, A will broadcast the query with {D, E} as targets.

6.6 Zone maintenance

The bordercast operation requires information about the surrounding zone, which

is collected and maintained by a separate protocol in the ZRP framework, called

IntrA-zone Routing Protocol (IARP). The result of executing an IARP protocol

is local knowledge of the zone, which includes all the nodes, Nz, that are within

R hops as well as the state of the links, Ez, among them. For a sparse network,

|Ez| = O(|Nz|). However, as the network density increases the size of link state

grows quadratically, – i.e., |Ez| = O(|Nz|
2) – as does the cost of the zone mainte-

nance protocol. This places a limit on the size of the zone, particularly when the

membership of the zone and its link state change rapidly, such as in the case of

high node mobility. Therefore, it is important for the zone maintenance protocol to

be as efficient as possible. The following describes two possible zone maintenance

protocols: IARP-node and IARP-zone.

109

The zone maintenance protocols receive information about their immediate

neighbors and link state from an NDP (Node Discovery Protocol). The NDP can

be either a simple heartbeat based node discovery protocol running at the net-

work layer, or some other mechanism operating lower on the network stack. It

provides information about the first hop with Link-Up and Link-Down notifi-

cations whenever a neighbor is discovered or is lost, respectively.

The IARP-node protocol broadcasts these local link state changes in a packet

with the TTL set to R hops. Each link update is sequenced at the link’s source.

Every node that hears such a packet for the first time, simply decrements the TTL

and rebroadcasts it, unless the remaining TTL has reached zero. In this manner,

the entire zone learns of the change. The protocol also incorporates a jitter delay

so as to lower the collision probability and possibly accumulate a few changes at

the source node before sending a packet. For nodes that join the network, there

is a mechanism to acquire zone state from a neighbor. Finally, there is also a

periodic broadcast of the full link state at a larger time interval, which permits

us to eventually expire links at nodes that have left the zones of either of the link

endpoints or to nodes that have died.

When the zone is stable, the IARP-node protocol is silent, modulo the infre-

quent periodic broadcasts. However, in the worst case, for a zone of k nodes and l

links that is changing all the time, each of k nodes will transmit a packet contain-

ing O(l) link changes that will be rebroadcast by k− 1 other nodes in the zone. In

other words, the worst case is O(k2l) information and O(k2) packets per zone, or

O(kl) information and O(k) packets per node, where k and l are functions of the

zone radius R, the network density n/A, and the transmission radius r.

110

The IARP-zone protocol takes a different approach. Every node broadcasts

only a single packet at every period, if there has been any change to the link

state. Each packet has a TTL of 1, but contains the known changes of the entire

zone-wide link state since the last transmission. The same packet is received by

neighbors in multiple directions, but each one prunes out the information relevant

for its zone based on shortest network distance calculations. As in the IARP-node

protocol, each link update is sequenced at the link source, there is a forced peri-

odic update at a longer time interval that permits link expiration, and the protocol

is otherwise silent if the zone is stable. In the all-changing, worst case, there is

still O(kl) information sent per node, but only in a single packet. This larger

packet may be readily sub-divided into independent, smaller packets, if the infor-

mation happens to exceed the link MTU. However, the advantage of transmitting

zone-wide changes in batches is retained: multiple links updates contain common

endpoints, allowing for a more efficient encoding. Within each packet, there is a

table of endpoints, which contains IP addresses and link source sequence numbers.

The packet then contains a list of source endpoint indices, each with a sub-list of

destination endpoint indices, representing all of the links. Bi-directional links are

encoded using a reversal bit.

6.7 Bordercast evaluation

In this section, I evaluate the performance of bordercast using SWANS. The first

experiment measures the relative unit cost of each of the protocols discussed, for

networks of different sizes, but at constant density. The network is generated by

placing wireless nodes randomly within a square field, and increasing the field

size in proportion to the number of nodes. Each network node is static in this

111

experiment, and is turned on at time t = 0 with no information other than its

unique address. The protocol stack at each node comprises a wireless radio, the

802.11b MAC, IPv4 network, ZRP routing, UDP transport, and test application

components that generate traffic. Note that since the various protocols perform

link-level broadcasts, the 802.11 collision avoidance and retransmission mechanisms

do not play a role in these simulations. However, each of the simulated protocol

incorporates jitter to reduce the probability of collisions and is already resilient to

point failures, either due to repetition (NDP) or due to a flooding-like behavior

(IARP and BRP). The simulator accounts for signal interference, path loss, and

fading.

The simulator measures the unit packet cost of a protocol, which is defined

as the number of packets sent throughout the network to perform a single round

or operation. The unit cost of the IARP protocols is the number of packets for

the protocol to quiesce, such that every node has learned its complete zone state.

Since the nodes begin with no information, this represents the worst case for the

protocol, which is when all the zone links must be added. The unit cost of a

bordercast operation is the number of packets transmitted to cover the entire

network with a query. For any fixed density, both of these protocols grow linearly

with the area of the network or, equivalently, linearly with the number of nodes in

the network.

Presented next, is a similar experiment, but with the network area kept constant

as the number of network nodes increases. Figure 6.4 compares the performance of

query propagation over the fixed area using flooding versus using bordercast. Each

point represents the average of at least 10 runs. The graph shows how a flooding-

based propagation grows in proportion to the number of nodes, but that bordercast

112

�

�

�

A
B

C

D

E
F

G

H

I

J

K

S

zone(B)

zone(A)

R=2

Figure 6.3: A bordercast in progress

0,0 5,6.1 10,12.2 15,18.4 20,24.5 25,30.7 30,36.8
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Bordercast versus flooding

network size (nodes in hundreds), network density (neighbour nodes)

to
ta

l p
ac

ke
ts

 s
en

t
p

er
 p

ro
p

ag
at

io
n

Flood
Bordercast, R=1
Bordercast, R=2

Figure 6.4: Unlike flooding, the bordercast cost of query propagation is indepen-

dent of the network density.

113

is density independent. In other words, adding more nodes to the network does not

increase the cost of bordercasting. Note that the left side of the curves represents

a very sparse network that is poorly connected. In this case, both flooding and

bordercast are simply not able to span the area for lack of intermediate nodes.

The x-axis shows both the total number of nodes, as well as the network density

in terms of the expected average number of neighbors per node. This number of

neighbors is computed from the node density and the transmission radius, i.e.,

E[l/k] = πr2(n/A). It matches the values reported by NDP in simulation. Finally,

one can observe that by setting the zone radius to 1, the bordercast performance

degenerates to flooding. This is expected, since with R = 1 the border set becomes

the neighbor set. The slight advantage of bordercast over flooding is merely an

edge effect: edge nodes do not retransmit the query under the bordercast protocol,

because all of their neighbors are already covered.

Increasing the zone radius improves the performance of bordercast somewhat,

as shown in Figure 6.5. However, the majority of the improvement is due to an

edge effect: the query need not be relayed to the last R − 1 nodes at the edge

of the network. While these edges do not diminish as the number of nodes in

the network increases, they should not be attributed to bordercasting. Instead,

this benefit is reminiscent of proactive routing, and will therefore erode in cases of

increased mobility. To quantify and eliminate the impact of the edges, Figure 6.6

shows the same experiment, but run on a field with opposite edges wrapped around

to create a torus.

Some smaller improvements due to larger zone radii can be seen within the

core of the network, where the protocol can sometimes avoid regions that are

sufficiently sparse. These are, in some sense, “internal edges” of the network.

114

0,0 5,6.1 10,12.2 15,18.4 20,24.5 25,30.7 30,36.8
0

50

100

150

200

250
Bordercast cost versus network density

network size (nodes in hundreds), network density (neighbour nodes)

p
ac

ke
ts

 s
en

t
p

er
 b

o
rd

er
ca

st

R=2
R=3
R=4

Figure 6.5: Increased zone radius improves bordercast performance, primarily due

to edge effects.

0,0 5,6.1 10,12.2 15,18.4 20,24.5 25,30.7 30,36.8
0

50

100

150

200

250
Bordercast cost versus network density (wrapped)

network size (nodes in hundreds), network density (neighbour nodes)

p
ac

ke
ts

 s
en

t
p

er
 b

o
rd

er
ca

st

R=2
R=3
R=4

Figure 6.6: Discounting edge effects, bordercast cost is not significantly affected

by increased zone radius.

115

'

&

$

%
Figure 6.7: An example 800-node, R = 4 bordercast plot

116

Figure 6.7 highlights this phenomenon with a spatial plot of one of the smaller

(n = 800, R = 4) simulations from Figure 6.5. The heavy circle at the bottom right

highlights the query source. The circle’s radius equals the transmission radius and

lighter circles surround nodes that transmitted the query. Thus, all nodes within

circles receive the propagating query. Arrows represent the targeted neighbors,

which may relay the query, if necessary. Notice that many nodes are not within

these circles, which means they never hear the query. However, all the nodes are

contained within 4 hop-sized circles around nodes that actually receive the query, a

close approximation of the actual zones, indicating that the protocol is covering the

network. (Zone circles are omitted to improve the clarity of the image.) One can

also see an example of internal nodes in the center that are covered, but without

receiving the query.

Another interesting phenomenon shown by the spatial plot is that the targeted

neighbors are usually found near the boundaries of the transmission circles, even

though there is no location information available to the protocol. This occurs

because the bordercast protocol tries to minimize the number of targeted neighbors

by selecting those neighbor nodes that are closer to (i.e., R − 1 hops from) the

greatest number of uncovered border nodes.

The following experiments analyze the cost of maintaining the required zone

state at each node. Shown in Figure 6.8 is the effect of increased density on

the number of packets sent by the two zone maintenance protocols. The graph

shows the cold-start scenario, where all links in the zone must be discovered and

added. As expected, the total number of the IARP-node packets (left axis) increase

quadratically with the density, i.e., O(k2), where k is the number of nodes within

the zone: each node sends O(k) packets and there are more nodes in the network.

117

0,0 5,6.1 10,12.2 15,18.4 20,24.5 25,30.7 30,36.8
0

10

20

30

40

50

60

70

80

90

100

110

120
Zone maintenance cost versus network density

network size (nodes in hundreds), network density (neighbour nodes)

to
ta

l I
A

R
P

−n
od

e
pa

ck
et

s
to

 q
ui

es
ce

 (
in

 th
ou

sa
nd

s)

0

1

2

3

4

5

6

7

8

9

10

to
ta

l I
A

R
P

−z
on

e
pa

ck
et

s
to

 q
ui

es
ce

 (
in

 th
ou

sa
nd

s)

IARP−node, R=2
IARP−node, R=3
IARP−node, R=4

IARP−zone

Figure 6.8: Cost of zone maintenance increases dramatically with increased density

and zone radius.

0

50

100

150

200

250

300

350

400

av
er

ag
e

lo
gi

ca
l I

A
R

P
−n

od
e

pa
ck

et
 s

iz
e

(b
yt

es
)

0,0 5,6.1 10,12.2 15,18.4 20,24.5 25,30.7 30,36.8
0

1

2

3

4

5

6

7

8

9

10
Zone maintenance cost versus network density

network size (nodes in hundreds), network density (neighbour nodes)

av
er

ag
e

lo
gi

ca
l I

A
R

P
−z

on
e

pa
ck

et
 s

iz
e

(K
by

te
s)

IARP−nodeIARP−zone, R=2
IARP−zone, R=2, compress
IARP−zone, R=3
IARP−zone, R=3, compress

Figure 6.9: Aggregated link state can be encoded efficiently to reduce average size

of update packets.

118

In turn, the number of nodes within a zone increases quadratically with the zone

radius, and thus the total number of packets in the network increases with the

fourth power of the zone radius! The R = 4 curve is actually significantly lower

than expected due to the large number of collisions caused by the flurry of link

state updates in the large zone. However, since IARP-node is a flooding protocol,

lost packets are often retransmitted by other neighbors and, with high probability,

any loss of information is local. Nevertheless, it is interesting that the missing link

state does not appreciably affect the bordercast performance above. As expected,

the number of IARP-zone packets (right axis) increases linearly with the density,

since each node sends a constant number of packets, forwarding the “waves” of

new information traveling in each direction. The number of IARP-zone packets

is not affected by the zone radius, since it merely passes along more information

within the same packet.

Figure 6.9 compares the average packet sizes of the two zone maintenance

protocols. IARP-node packets (left axis) are very small, because they contain

the link states of only a single node. In contrast, IARP-zone packets (right axis)

contain information about changes to the entire zone. The size of these packets is

proportional to the number of links, which grows quadratically with density and

with the fourth power of the zone radius. However, the more efficient encoding of

this information saves around 60% of the packet size at a density of 30 neighbors

per node, independent of the zone radius. The compression increases with the

density, since the proportion of common link endpoints increases with the density.

Figure 6.10 shows the total bandwidth consumed for each of the zone mainte-

nance protocols to quiesce starting from no zone state. The two protocols transmit

the same amount of information, but IARP-zone outperforms IARP-node through

119

efficient encoding of the update packets. The plotted data does not include packet

headers; this would further benefit IARP-zone.

Finally, it is important to consider the effect of mobility on each of these pro-

tocols. By their design, both the node discovery and bordercasting protocols are

unaffected by mobility. However, mobility can change the zone link state and its

membership, which will necessitate zone maintenance. To measure this cost, I cre-

ate a random network and allow the zone maintenance protocols to quiesce. I then

move each node a fixed distance in a random direction and measure the number

of packets required to update the zone information. Figure 6.11 shows the total

number of IARP-node and IARP-zone packets for a network of 10,000 nodes. One

can see that the number of packets grows in proportion to the number of changes

in the zone, but has an upper-bound that corresponds to the total amount of zone

information. The lower line below each curve is the unit cost of each respective

zone maintenance protocol from a cold start. The upper line above each curve is

twice this value. The additional transmissions above the lower line are due to link

state drop notifications, which do not occur from a cold start. Notice, however,

that the IARP-zone cost actually tends back down toward the lower line. This

peculiar phenomenon results from IARP-zone pruning its link state after incorpo-

rating each update packet. This pruning is essential, because under IARP-zone,

nodes will receive some link state that is not relevant for their zone. And, if this

new link state is forwarded on, the zone information at each node will eventually

include the entire network. An added bonus of this pruning is that link failure

notifications are suppressed when a node has traveled so far out of its original zone

as to be irrelevant.

120

0,0 5,6.1 10,12.2 15,18.4 20,24.5 25,30.7 30,36.8
0

5

10

15

20

25

30

35
Zone maintenance cost versus network density

network size (nodes in hundreds), network density (neighbour nodes)

to
ta

l b
an

dw
id

th
 to

 q
ui

es
ce

 (
in

 M
by

te
s)

IARP−node, R=2
IARP−zone, R=2
IARP−zone, R=2, compress

Figure 6.10: Comparing the two zone maintenance protocols shows that zone-wide

link update aggregation and efficient encoding is beneficial.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

25

50

75

100

125

150

175

200

225

250
Zone maintenance cost under mobility

movement distance (in multiples of transmission radius)

to
ta

l p
ac

ke
ts

 to
 q

ui
es

ce
 (

in
 th

ou
sa

nd
s)

IARP−node
IARP−zone

Figure 6.11: Mobility increases the cost of zone maintenance.

121

6.8 Conclusions

Given these findings, one can draw certain inferences and make recommendations

regarding the use of bordercasting in ad hoc networks:

• Bordercast should be used in place of flooding. Bordercast performs query

propagation with cost proportional to the the area of an ad hoc network (or

equivalently, the network diameter), regardless of the density of nodes (or

equivalently, the number of nodes). It can replace the flooding-based query

propagation found in many ad hoc routing protocols, as well as in other

network querying operations, such as resource discovery and some sensor

network data queries.

• With respect to bordercast performance, set the zone radius, R, to 2 hops.

Setting a higher zone radius results in little bordercast improvement and sub-

stantially increases the cost of zone maintenance, especially at higher network

densities. Note that there may be other reasons to have a larger zone, includ-

ing proactive route maintenance and a high rate of route requests relative to

the rate of link changes (i.e., a mostly stationary network). However, one of

the contributions of these experiments is that bordercast performance is not

among those reasons.

• Aggregate and compress link state updates. IARP-zone outperforms IARP-

node, because it aggregates link state updates, thus transmitting fewer packet

headers and reducing the average packet size through efficient encoding of

links.

122

• Adjust the transmission power, if possible, to reduce the transmission radius,

r, while maintaining network connectivity. Shorter r settings reduce the

zone membership and the cost of zone maintenance both in terms of packets

and transmission power per packet. However, a shorter transmission radius

implies a larger network diameter (in hops). And, in turn, this implies greater

latencies and more bordercast packets to cover the same area.

This final point raises the question of whether bordercast is necessary at all.

If one can set the transmission radius low enough, such that the network degen-

erates into a tree (i.e., an average of 2 neighbors per node), then bordercast is

strictly equal to flooding. However, the average route length along such a tree

may increase dramatically. Even at the magic number of 6 spatially separated

neighbors per node on average (i.e., approximately 60 degrees from one another)

the two protocols will match. In general, the benefits of bordercast stem from its

ability to silence neighbors that are not required to propagate the query. If all

the neighbors are required to relay the query, due to sparseness of the network,

then bordercast will not exceed the performance of flooding. However, lowering

the transmission radius is not always possible for a number of reasons. These

include fixed hardware power settings, increased probability of link breakage and

route failure, overhead of power adaptation protocol, increased number of hidden

terminals, increased network diameter, increased average route length and packet

latencies, and decreased route diversity. Thus, if the number of neighbors cannot

be reduced at the link level, bordercast presents a viable alternative to do so at

the network level, preventing unnecessary transmissions and “broadcast storms”

during propagation.

123

6.9 Summary

The scalability of ad hoc networks – the ability to efficiently route and transmit

packets across ad hoc networks as they grow in size – is a key research challenge.

In this chapter, I have analyzed the cost of discovering a route to some desired

destination node using only its unique address. I have evaluated bordercast, a

query propagation protocol that is density-independent, and have proven that this

is optimal. Bordercast can improve the performance of many existing routing

protocols in dense networks by replacing their flooding-based query propagation.

These results also show that: optimal bordercast performance does not require

zone radii larger than 2 hops; the cost of zone maintenance is proportional to

network mobility and bounded; and, that aggregating and efficiently encoding

link state updates can substantially reduce the overhead of zone maintenance.

The experiments in this chapter, at the scales required to reach the appropriate

conclusions, were possible due to the performance and scalability of JiST and

SWANS.

Chapter 7

Related Work
The work on JiST, SWANS, and bordercast spans multiple domains of research,

including systems, simulation, networking, and languages. This chapter discusses

the body of related work in each of these areas.

7.1 Simulation languages

Simulation research has a rich history dating back to the early 60s, when it

prompted the development of Simula [30], an Algol-based language that embod-

ied many new design ideas, including object-oriented principles, dynamic binding,

and co-routines. It had far-reaching impact on simulation and also throughout the

emerging discipline of computer science. Many other simulation languages and sys-

tems have since been designed, focusing on performance, distribution, concurrency,

speculative execution, and new simulation application domains.

General-purpose simulation languages are often closely related to popular exist-

ing languages and contain extensions for events, synchronization, and other simu-

lation primitives. For instance, Csim [99], Yaddes (or Parsimony) [87], Maisie [10],

and Parsec [11] are all derivatives of either C or C++ that support process-oriented

simulation. Each of these languages is compiled via a C or C++ source-code in-

termediate, and the resulting executables can be run using a variety of language

runtimes. Each of these projects emphasizes different capabilities and ideas. Csim

is a commercial product that provides advanced statistics gathering functionality

and a library of interesting simulation objects, such as resources, facilities, storages,

buffers, mailboxes, etc. Maisie is a general-purpose parallel programming language

124

125

that introduces entities, messages, guards, and various synchronization primitives

into the syntax of the language. Parsec (for PARallel Simulation Environment for

Complex systems) is a follow-on of Maisie that provides more intuitive and flexible

syntactic constructs and radically changes the runtime model to execute entities

on separate stacks, improving performance by more than an order of magnitude,

but at the expense of memory. Finally, Yaddes (for Yet Another Distributed

Discrete Event Simulator) defines entities as state machines and the communi-

cation channels among them in a declarative, Lex-Yacc-like style. Each of these

projects, like JiST, recognizes the benefits of compiling via a standard language

compiler. However, all the high-level simulation-specific information is lost after

pre-processing, meaning that it is not available for the purposes of either static or

dynamic optimization.

Simulation research has also focused on applying object-oriented concepts to

simulation-specific problems. Projects, such as Sim++ [8], Pool [4], ModSim II

[24], and Moose [108] have investigated various object-oriented possibilities for con-

currency, synchronization, and distribution in the context of simulation. Sim++,

an extension of the popular, C-based SimPack library, is a sequential, object-

oriented C++ library with support for basic simulation functionality, such as

events, resources, and statistics gathering. Pool (for Parallel Object Oriented

Language) is a strongly typed, distributed, garbage-collected, synchronous mess-

age-passing language. Among other novel ideas, the POOL project investigated

the benefits and ramifications of decoupling sub-typing from inheritance. ModSim

is a strongly-typed, object-oriented descendant of Simula and Modula, support-

ing process-oriented simulation, both synchronous and asynchronous events, and

numerous object oriented features, including multiple inheritance and polymor-

126

phism. Finally, the Moose language [108], also a derivative of Modula-2, utilizes

inheritance in an interesting way: to specialize implementations of simulation ob-

jects with specific knowledge and simulation algorithms that improve execution

efficiency. JiST inherits the traditional and popular object-oriented properties of

the Java language. It extends the Java object model and execution semantics to

support both concurrent object and process-oriented simulation.

Various object-oriented languages, such as Rosette [105] and Act++ [59], struc-

ture the concurrency of simulations using actors, as opposed to the traditional

concurrent object or process-oriented execution models. The focus of the Rosette

work, for example, was on dynamic optimizations within the Actor model [25],

providing mechanisms and policies for monitoring and controlling running simula-

tions. While JiST does not support an actor-like functionality, its design does not

preclude such an addition.

Other simulation languages, such as Apostle [23] and TeD [83] have taken a

more domain-specific language approach. TeD, for example, is an object-oriented

language developed mainly for modeling telecommunications network elements

and protocols. It supports high-level language constructs for the configurations

of routers and switches. OOCSMP [33] is another high-level simulation language

designed for continuous models expressed as partial differential equations. While

JiST is currently a general-purpose discrete-event simulation platform, the de-

sign could certainly subsume domain-specific extensions without loss of generality.

Domain-specific extensions could take the form of class libraries or language ex-

tensions. In fact, the inherent flexibility of bytecode level rewriter would facilitate

the latter approach.

127

7.2 Simulation libraries

The most popular approach to building simulators involves the use of simulation

libraries. A frequently stressed benefit of this approach is that such libraries are

usable within existing general-purpose languages, most often C or C++.

Sim++ [8] (mentioned previously) is an object-oriented class library for se-

quential simulation. Libraries, such as OLPS [1], Speedes [101], and Yansl [58],

provide support for parallel event-driven simulation. SimKit [40] is a simulation

class library that supports logical processes. And, the Compose [68] simulation

library allows individual concurrent objects to dynamically adapt their execution

modes among a number of conservative and optimistic synchronization protocols.

With the widespread adoption of Java, there has also been research interest in

using this language for simulation, as described in [62]. SimJava [52] and Silk [50]

are two early Java-based libraries for process-oriented discrete-event simulation.

However, both of these solutions utilize native Java threads within each process or

entity to capture simulation time concurrency and therefore do not scale. The IDES

library [78] is more reasonably designed, but the project was focused on using Java

for simplifying distributed simulation and did not address sequential performance.

Likewise, the Ptolemy II [17] system provides excellent modeling capabilities, but

utilizes a sophisticated component framework that imposes overheads in the crit-

ical event dispatch path. Finally, the Dartmouth Scalable Simulation Framework

(DaSSF) [64] includes hooks to allow for extensions and event handlers written in

Java. These projects combine the features of prior simulation library initiatives

with the benefits of the Java environment, such as garbage collection, type safety,

and portability.

128

However, regardless of the language chosen, the primary disadvantage of lib-

rary-based approaches is that the simulation program becomes more complex and

littered with simulation library calls and callbacks. This level of detail not only

obscures simulation correctness, but also impedes possible high-level compiler opti-

mizations and program transformations. In other words, library-based approaches

lack transparency. Noting the advantages of writing simulators in standard lan-

guage environments, JiST was designed to work within Java. However, JiST pro-

vides its simulation functionality using a language-based approach, rather than via

a library.

7.3 Simulation systems

Researchers have built simulations using special operating system kernels that can

transparently run processes in virtual time. The landmark simulation kernel work

is the TimeWarp OS [54]. Projects such as GTW [32], Warped [67], Parasol [69],

and others, have investigated important dynamic optimizations within this model.

ParaSol, for example, supports process-oriented simulation over a variety of dis-

tributed computing software environments, such as MPI, PVM, P4, and operates

both across homogeneous clusters and shared memory multi-processors. Features

of Parasol include support for multiple optimistic schedulers, transparent check-

pointing of simulation entities, and their transparent migration and location. Simu-

lation kernels associated with specific programming models and language projects,

such as Yaddes, Parsec, and others, have already been discussed in section 7.1.

JiST provides protection and transparency at finer granularity by using safe lan-

guage techniques and eliminates the runtime overhead of process-level isolation.

129

In summary, JiST merges simulation ideas from both the systems and languages

camps by leveraging virtual machines as a simulation platform. To the best of my

knowledge, JiST is the first system to integrate simulation execution semantics

directly into the execution model of a standard virtual machine-based language.

7.4 Languages and Java-related

Java, because of its popularity, has become the focus of much recent research. The

Java virtual machine has not only undergone extensive performance work, it has

also become the compilation target of many other languages [104]. Projects such as

JKernel [49] have investigated the advantages of bringing traditional systems ideas

of process isolation and resource accounting into the context of a safe language

runtime. The Jalapenõ project [3] has also demonstrated performance advantages

of a language-based kernel. Using a common language reduces the boundary-

crossing overhead and opens up more opportunities for optimization. JiST makes

similar claims and advances in the context of simulation.

A vast number of projects have used Java bytecode analysis and rewriting tech-

niques for a variety of purposes. The Byte-Code Engineering Library [31], Soot

[107], and other libraries considerably simplify this task. AspectJ [61] exposes

a rewriting functionality directly within the language. Others, including cJVM

[6] and Jessica [66], have used Java bytecode rewriting techniques to provide an

abstraction of a single-system image abstraction over a cluster of machines. The

MagnetOS project [12] has extended this idea to support transparent code migra-

tion in the context of an operating system for ad hoc networks [13]. The JavaParty

[85] and the xDU [39] projects have looked at similar techniques to perform Java

application partitioning and distribution. The JavaGoX [100] and PicoThreads

130

[14] projects among others, have considered the problem of efficiently capturing

stack information without modifying the JVM, as proposed in [20]. KaRMI [84]

improves RPC performance using a fast drop-in replacement for Java RMI that

uses static bytecode analysis to generate specialized marshaling routines. Finally,

[18] and [81] have performed static analysis to determine the mutability of Java

objects for a variety of optimizations. JiST brings these and other ideas to bear

on the problem of high-performance simulation.

7.5 Network simulation

The networking community depends heavily on simulation to validate its research.

The ns2 [70] network simulator has had a long history with the community and is

widely trusted. It was therefore extended to support mobility and wireless proto-

cols [56]. Though it is primarily used sequentially in the community, researchers

have extended ns2 to PDNS [93], allowing for conservative parallel execution. Glo-

MoSim [111] is a newer simulator written in Parsec [11] that has recently gained

popularity within the wireless ad hoc networking community. The sequential ver-

sion of GloMoSim is freely available. The conservatively parallel version has been

commercialized as QualNet [88]. Another notable and commercially-supported

network simulator is OPNet [79]. Recently, the Dartmouth Scalable Simulation

Framework (DaSSF) has also been extended with SWAN1 [65] to support dis-

tributed wireless ad hoc network simulations. Likewise, TeD [83] has been ex-

tended with WiPPET [60], though it is focused on cellular networks. SWiMNet

[21] is another parallel wireless simulator focused on cellular networks.

1Not to be confused with SWANS.

131

I have described JiST running wireless network simulations of one million nodes

on a single commodity machine with a 2.2GHz processor and 2GB of RAM. Run-

ning a more realistic networking protocol, such as ZRP, requires more memory

per node. JiST was able to scale to network models of 500,000 ZRP nodes on a

4GB machine running a hugemem Linux kernel. To the best of my knowledge, this

exceeds the performance of every existing sequential network simulator. Based on

the literature, this scale of network is beyond the reach of many parallel simulators,

even when using more hardware. Clearly, memory consumption depends on what

is being simulated, not just on the number of nodes in the network. For example,

in the NDP simulation the state of the entire stack of each node consumes less

than 1K of memory, but this will clearly increase if additional simulation com-

ponents are added. Likewise, simulation performance depends on network traffic,

node density and many other parameters. Therefore, merely as a point of refer-

ence, [92] summarizes the state of the art in 2002 as follows: using either expensive

multi-processor machines or clusters of commodity machines connected with fast

switches, DaSSF, PDNS, and WARPED can simulate networks of around 100,000

nodes, while TeD and GloMoSim have shown results with 10,000 node networks.

More recently, the PDNS website [91] states that “PDNS has been tested on as

many as 136 processors simulating a 600,000+ node network”, but without further

details. This same group continues to push the envelope of parallel and distributed

simulation further still [35], with GTNetS [90].

Various projects, including EmuLab [109], ModelNet [72] and PlanetLab [86]

provide alternatives to simulation by providing emulation and execution test-beds.

JiST simulation is complementary to these approaches. However, the ability to

132

efficiently run standard network applications over simulated networks within JiST

blurs the distinction between simulation and emulation.

Finally, J-Sim (JavaSim) [106] is a relatively new and highly-optimized sequen-

tial network simulator written in Java, using a library that supports the construc-

tion of simulations from independent Components with Ports that are connected

using Wires. The system is intelligently designed to reduce threading overhead,

synchronization costs, and message copying during event dispatch, resulting in

performance only just slightly slower than JiST. However, the memory overhead

for the various JavaSim infrastructure objects, results in a memory footprint that

is larger than JiST by an order of magnitude for network models of equal size.

7.6 Wireless ad hoc networking

Chapter 6 was dedicated to the analysis of the bordercast query propagation al-

gorithm at large scale. Much prior research on ad hoc networks has focused on

multi-hop routing algorithms, such as DSR [57], AODV [82], TORA [80], TBRPF

[15], OLSR [29], and many others. Each of these is designed and optimized under

different networking assumptions. Many such protocols can be made more scalable

by replacing their flood-based query propagation mechanisms with bordercast, as

in ZRP [48]. Excellent surveys include [95] and [22], and [2] for sensors networks

specifically.

The broadcast storm problem in mobile ad hoc networks [75] has been inves-

tigated, with numerous solutions proposed and compared [74, 110]. Specifically,

various protocols based on distributed approximate connected dominating set algo-

rithms [44] are surveyed in [103]. Recently, probabilistic broadcast schemes [47, 98]

have also been proposed to overcome the same problem. I have shown that border-

133

cast, a query propagation protocol that predates all of this work, actually already

has density-independent properties, and have performed experiments at scales that

were previously not possible.

Chapter 8

Conclusion

8.1 Summary

In this dissertation, I have proposed and advocated for virtual machine-based

simulation, a new, unifying approach to building simulators. I have outlined the

rationale for this new design and contrasted it with the existing language-based

and systems-based approaches to building simulators.

In particular, I have introduced the JiST prototype, a new general-purpose

Java-based simulation platform that embodies the virtual machine-based simula-

tor design. JiST embeds simulation execution semantics directly into the Java

virtual machine. The system provides all the standard benefits that the mod-

ern Java runtime affords. In addition, JiST is efficient, out-performing existing

highly optimized simulation runtimes, and inherently flexible, capable of trans-

parently performing cross-cutting program transformations and optimizations. I

have leveraged this flexibility to introduce additional concepts into the JiST model,

including process-oriented simulation and simulation time concurrency primitives.

Finally, I have constructed SWANS, a wireless ad hoc network simulator, atop

JiST, as a validation of the JiST approach, and have demonstrated that SWANS

can scale to wireless network simulations of a million nodes even on a single com-

modity machine. I have also utilized SWANS to perform a scalable analysis of the

bordercast query propagation protocol, showing that it is density-independent.

134

135

8.2 Future work

The JiST work can be extended in a number of research and engineering directions:

• Parallelism - As discussed in section 3.7, the current implementation has

focused exclusively on sequential performance. JiST, however, was explicitly

designed and implemented with parallelism in mind. It would be natural to

extend the kernel to allow multiple Controllers to operate concurrently. It

should be relatively easy to leverage the full processing power of commodity

multi-processor machines.

• Distributed simulation - JiST was also designed with distributed simulation in

mind. Entity separators can transparently support a single system abstrac-

tion by tracking entity locations as they are dynamically migrated across a

cluster to balance computational and network load. The JiST kernel should

be extended to support conservatively synchronized, distributed, cooperative

operation with peer JiST kernels. This work would increase the available sim-

ulation memory and allow larger models to be processed. Interesting issues

to address include efficient serialization and migration algorithms.

• Speculative execution - The cost of synchronization is critical to the per-

formance of a distributed simulator. As discussed in section 3.7, JiST can

already transparently support both checkpointing and rollback of entities.

Speculative execution poses a rich space of design and research problems.

It would be interesting, for example, to investigate possible interactions be-

tween the GVT-scheduler and the local garbage collector, as well as different

checkpointing or rollback schemes that are tailored through static bytecode

analysis and simulation profiles.

136

• Simulation research platform - The bytecode level rewriter component within

the JiST design represents a point of flexibility, wherein much additional

functionality may be inserted. In addition to the classic simulation exten-

sions just described, and much like the manner in which continuations were

implemented in section 3.5, the rewriter can be used to introduce new re-

search ideas into a existing base of simulations. One such example mentioned

in section 3.8 is reverse compilation. In general, the rewriter permits cross-

cutting simulation transformations and a separation of concerns that makes

JiST an attractive platform for ongoing simulation research.

• Simulation-specific language extensions - While it was decided, for software-

engineering reasons, that JiST-based simulations should be compiled with a

standard Java compiler, this restriction could be relaxed to allow for more

complex syntactic structures that may be required by simulations. Complex

simulation constructs may be difficult or impossible to express within the

Java language syntax. An extended Java-like language may be implemented

either as a text pre-processor or as a bytecode-generating compiler. Even

relatively simple JiST constructs such as:

class Foo implements JistAPI.Entity {

could then be written more elegantly as:

entity Foo {.

Also, more complex language constructs, such as Parsec-like message guards,

come to mind. However, their utility, too, is questionable. Static bytecode

analysis could readily determine message guards from early termination con-

ditions within the method body. Nevertheless, the space of language exten-

sions is a rich, unexplored research area.

137

• Simulation-specific virtual machine extensions - As discussed in section 5.7,

JiST performance suffers from a number of Java design decisions. Specifically,

the virtual machine does not handle reflection of primitives types efficiently

and lacks an API for type-safe stack access. While both of these issues

are being addressed for mainstream reasons, there may be other simulation-

specific optimizations that are possible only through modifications to the

virtual machine.

• Java-like simulation time synchronization - Mapping Java synchronization

primitives – wait(), notify(), synchronized – to simulation time equiv-

alents would allow a larger set of Java applications to be embedded within

various JiST-based simulators.

• Declarative simulation specifications - JiST simulators tend naturally to be

component-oriented and simulations are often configured as graphs of con-

nected entities that have highly compressible structure. It would be useful

to construct such entity graphs via a declarative specification, rather than

the current approach of using imperative driver programs.

• New simulation primitives - JiST currently supports a few high-level simu-

lation primitives, such as Channels and Threads. A library of well-known

simulation primitives commonly found in other simulation systems can be

implemented.

• New simulation domains and applications - The functionality of SWANS can

be further expanded by the networking research community. Simulators in

other application domains should also be developed.

138

• Debugging, or interactive simulation - One of the significant advantages of

leveraging the Java language and runtime is the ability to adopt existing Java

tools, such as debuggers, often lacking in simulation environments. Event-

driven programs are particularly difficult to debug, compounding the prob-

lem. An existing Java debugger could readily be extended to understand

simulation events and other kernel data structures, resulting in functionality

that is unparalleled in any existing simulation environment. Since Java is a

reflective language, JiST simulations may be paused, modified in-flight, and

then resumed. The appropriate tools to perform such inspection effectively

would facilitate interactive simulation and present interesting opportunities.

For example, one could use the debugger to control the distributed simula-

tion kernel and the GVT-scheduler, not only to obtain consistent cuts of the

simulation state, but also to permit stepping backwards in simulation time

to understand root causes of a particular simulation state.

To conclude, I hope that the performance of JiST, its ability to merge ideas

from the systems-oriented and the language-oriented approaches to simulation, its

flexibility and utility as a simulation research platform, and the popularity of the

Java language will facilitate its broader adoption within the simulation community.

Appendix A

The JiST API
Many of the important kernel functions have already been mentioned. For com-

pleteness, the full JiST application interface (listed partially in Figure 2.3) is in-

cluded and described below.

Entity interface - tags a simulation object as an entity, which means that invoca-

tions on this object follow simulation time semantics.

e.g. jist.swans.mac.MacEntity.

Continuation exception - tags an entity method as blocking, which means that

these entity method invocations will be performed in simulation time, but

with continuation.

e.g. jist.swans.app.UdpSocket.receive(DatagramPacket).

Continuable exception - explicitly tags a regular method as possibly blocking,

useful only for instances when static analysis can not propagate the blocking

property to all callers due to dynamic dispatch.

e.g. the abstract method: jist.swans.app.io.InputStream.read().

Timeless interface - explicitly tags a simulation object as timeless, which means

that it will not be changed across simulation time and thus need not be

copied when transferred among entities.

e.g. jist.swans.node.Message.

getTime() - returns the local simulation time. The local time is the time of

the current event being processed plus any additional sleep time requested

during the processing of the current event.

139

140

END - Simulation end time constants, greater than any legal simulation time.

sleep(time) - advance the local simulation time.

end() - end simulation after the current time-step.

endAt(time) - end simulation after given absolute time.

callStaticAt(method, params, time) - invoke a static method at given simu-

lation time.

runAt(runnable, time) - invoke a runnable object at given simulation time.

THIS - entity self-referencing separator, analogous to Java this object self-refer-

ence. Should be type-cast before use.

ref(entity) - returns a separator of a given entity. All statically detectable entity

references are automatically converted into separator stubs by the rewriter,

so this operator should not be needed. It is included only to deal with rare

instances of creating entity types dynamically and for completeness.

isEntity(o) - returns whether given reference is an entity reference.

toString(o) - returns the string representation of an object or entity.

Proxiable interface - an interface used to tag objects that may be proxied. It

serves to improve proxying performance by eliminating the need for a re-

laying wrapper entity.

proxy(target, interface) - Returns a proxy separator for the given target object

and interface class. The proxying approach depends on whether the target

is an existing entity, a regular object or a proxiable object. The result is an

object whose methods will be relayed to the target in simulation time.

141

proxyMany(target, interface[]) - Same as proxy call and allows for multiple

interfaces.

run(type, name, args, prop) - Start a new simulation with given name and

arguments at the current time. The supported simulation loader types

are Java applications (RUN CLASS), BeanShell scripts (RUN BSH), and

Jython scripts (RUN JPY). The properties object carries simulation type-

specific information directly to the simulation loader.

createChannel() - Create a new CSP Channel Entity.

setSimUnits(ticks, name) - Set the simulation time unit of measure and length

in simulation ticks. The default is 1 tick.

getTimeString() - Return time string in simulation time units.

CustomRewriter interface - Defines an installable rewriting phase.

installRewriter(rewriter) - Installs a custom class rewriting phase at the begin-

ning of the JiST rewriting machinery. Used for simulation specific rewriting

needs. For example, SWANS uses this interface to rewrite the networking

library calls of applications to operate over the simulated network.

Logger interface - Defines an custom event logger.

setLog(logger) - Set the simulation logger.

log(object) - Log an object, usually a string.

Appendix B

SWANS Components
This appendix enumerates the various SWANS components that are available (as

of this writing). Additional components can be readily implemented. Users are en-

couraged to contribute components, either with or without source, to the research

community.

B.1 Physical

The SWANS physical layer components are responsible for modeling signal prop-

agation among radios as well as the mobility of nodes. Radios make transmission

down-calls to the simulation “field” and other radios on the “field” receive recep-

tion up-calls from it, if they are within range of the signal. Both the path loss

and fading models are functions that depend on the source and destination radio

locations. Path loss models include free-space, two-ray and table-driven path loss.

Fading models include none, Raleigh and Rician fading. Node mobility is imple-

mented as an interface-based discretized model. Upon each node movement, the

model is queried to schedule the next movement. The mobility models that are

implemented include static and random-waypoint.

jist.swans.field.*

interface class description

FieldInterface Field centralized node container that performs

mobility and signal propagation with fad-

ing and path loss

Fading Fading.None zero fading model

142

143

jist.swans.field.*

interface class description

Fading.Raleigh Raleigh fading model

Fading.Rician Rician fading model

Pathloss Pathloss.FreeSpace path loss model based purely on distance

Pathloss.TwoRay path loss model that incorporates ground

reflection

Spatial Spatial.Linear signal propagation and location update

performed via linked list of radios

Spatial.Grid as above, but performed using a more effi-

cient flat grid structure of small “Linear”

bins

Spatial.HierGrid as above, but performed using a more

consistently efficient hierarchical grid

structure

...TiledWraparound tile inner spatial structure in 3x3 grid so

as to wrap field edges around into a torus

Placement Placement.Random uniformly random initial node placement

Mobility Mobility.Static no mobility

...RandomWaypoint pick a random “waypoint” and walk to-

wards it with some random velocity, then

pause and repeat.

144

jist.swans.field.*

interface class description

...RandomWalk pick a direction, walk a certain distance

in that direction, with some fixed and

random component, reflecting off walls as

necessary, then pause for some time and

repeat.

Mobility.Teleport pick a random location and teleport to it,

then pause for some time, and repeat.

The SWANS radio receives up-calls from the field entity and passes successfully

received packets on to the link layer. It also receives down-calls from the link layer

entity and passes them on to the field for propagation. An implementation of an

independent interference radio exists, as in ns2, as well as an additive interference

radio, as in GloMoSim. The independent interference model considers only signals

destined for the target radio as interference. The additive model correctly considers

all signals as contributing to the interference. Both radios are half-duplex, as in

802.11b. Radios are parameterized by frequency, transmission power, reception

sensitivity and threshold, antenna gain, bandwidth and error model. Error models

include bit-error rate and signal-to-noise threshold.

jist.swans.radio.*

interface class description

RadioInterface RadioNoiseIndep interference at radio consists only of

other signals above a threshold that

are destined for that same radio

145

jist.swans.radio.*

interface class description

RadioNoiseAdditive interference consists of all signals

above a threshold

none RadioInfo unique and shared radio parameters

B.2 Link

The SWANS link layer entity receives up-calls from the radio entity and passes

them to the network entity. It also receives down-calls from the network layer

and passes them to the radio entity. The link layer entity is responsible for the

implementation of a chosen medium access protocol and for encapsulating the net-

work packet in a frame. Link layer implementations include IEEE 802.11b and a

“dumb” protocol. The 802.11b implementation includes the complete DCF func-

tionality, with retransmission, NAV and backoff functionality. It does not include

the PCF (access-point), fragmentation or frequency hopping functionality found

in the specification. This is on par with the GloMoSim and ns2 implementations.

The “dumb” link entity will only transmit a signal if the radio is currently idle.

jist.swans.mac.*

interface class description

MacInterface MacDumb transmits only if transceiver is idle

Mac802 11 802.11b implementation

MacLoop loopback interface

none MacAddress mac address

MacInfo unique and shared mac parameters

146

B.3 Network

The SWANS network entity receives up-calls from the link entity and passes them

to the appropriate packet handler, based on the packet protocol information. The

SWANS network entity also receives down-calls from the routing and transport

entities, which it enqueues and eventually passes to the link entity. Thus, the

network entity is the nexus of multiple network interfaces and multiple network

packet handlers. The network interfaces are indexed sequentially from zero. The

packet handlers are associated with IETF standard protocol numbers, but are

mapped onto a smaller index space, to conserve memory, through a dynamic pro-

tocol mapper that is shared across the entire simulation. Each network interface is

associated with a packet queue, for which multiple priority and packet drop poli-

cies are possible. The packets are dequeued and sent to the appropriate link entity

using a token protocol to ensure that only one packet is transmitted at a time per

interface. The network layer sends packets to the routing entity to receive next

hop information and allows the routing entity to peek at all incoming packets. It

also encapsulates message with the appropriate IP packet header. The network

layer uses an IPv4 implementation. Loopback and broadcast are implemented.

jist.swans.net.*

interface class description

NetInterface NetIp IPv4 implementation

MessageQueue NoDrop prioritized, no drop IP message queue

PacketLoss Zero zero network layer packet loss

Uniform independent, random drop with fixed proba-

bility

147

jist.swans.net.*

interface class description

none NetAddress network address

B.4 Routing

The routing entity recieves up-calls from the network entity with packets that

require next-hop information. It also receives up-calls that allow it to peek at

all packets that arrive at a node. It sends down-calls to the network entity with

next-hop information when it becomes available. SWANS implements the Zone

Routing Protocol (ZRP) [46], Dynamic Source Routing (DSR) [57] and Ad hoc

On-demand Distance Vector Routing (AODV) [82].

jist.swans.route.*

interface class description

RouteInterface RouteZrp Zone Routing Protocol

RouteDsr Dynamic Source Routing protocol

RouteAodv Ad hoc On-demand Distance Vector routing

protocol

B.5 Transport

The SWANS transport entity receives up-calls from the network entity with packets

of the appropriate network protocol and passes them on to the appropriate regis-

tered transport protocol handler. It also receives down-calls from the application

entity, which it passes on to the network entity. The two implemented trans-

port protocols are UDP and TCP, which encapsulate packets with the appropriate

148

packet headers. UDP socket, TCP socket and TCP server socket implementations

actually exist within the application entity. The primary reason for this decision

is that these implementations are modeled after corresponding Java classes, which

force the use non-timeless objects. The DatagramSocket, for example, uses a

mutable DatagramPacket to provide data. In all other respects, including correct-

ness and performance, this decision, to move the socket implementations into the

application entity, is inconsequential.

SWANS installs a rewriting phase that substitutes identical SWANS socket

implementations for the Java equivalents within node application code. This allows

existing Java networking applications to be run as-is over the simulated SWANS

network. The SWANS implementations use continuations and a blocking channel

in order to implement blocking calls. The entire application is conveniently frozen,

for example, at the point that it calls receive until its packet arrives through the

simulated network. The result is a powerful Java simulation “sandwich”: Java

networking applications running over SWANS, running over JiST, running within

the JVM.

There is an interesting complexity in this transformation that is worth mention-

ing. As discussed previously, since constructors can not be invoked twice, they may

not be continuable. However, certain socket constructors, such as a TCP socket,

have blocking semantics, since they require a connection handshake. This problem

is circumvented by rewriting constructor invocations into two separate invoca-

tions. The internal socket implementation has a non-blocking constructor, which

does nothing more than store the initialization arguments and a second blocking

method that will always be called immediately after the constructor. This second

method can safely perform the required blocking operations.

149

jist.swans.trans.*

interface class description

TransInterface TransUdp UDP implementation, usually interacts with

jist. swans. app. net. UdpSocket .

TransTcp TCP implementation, usually interacts with

jist. swans. app. net. TcpServerSocket

and .TcpSocket and various block-

ing streams implementations in

jist. swans. app. io. *

B.6 Application

The application entities reside at the top of the network stack. They make down-

calls to the transport layer and receive up-calls from it, usually via SWANS sock-

ets or streams that mimic their Java equivalents. The most generic and useful

kind of application entity is a harness for regular Java applications. One can run

standard, unmodified Java networking application atop SWANS. These Java ap-

plications operate within a context that includes the correct underlying transport

implementation for the particular node. Thus, these applications can open regular

communication sockets, which will actually transmit packets from the appropriate

simulated node, through the simulated network. SWANS implements numerous

socket and stream types in the jist.swans.app.net and jist.swans.app.io

packages. Applications can also connect to lower-level entities. The heartbeat

node discovery application, for example, operates at the network layer. It circum-

vents the transport layer and communicates directly with the network entity.

150

jist.swans.app.*

interface class description

AppInterface AppJava versatile application entity that allows regu-

lar Java network applications to be executed

within SWANS

AppHeartbeat runs heartbeat protocol for node discovery

item package implementations

socket net UdpSocket, TcpServerSocket, TcpSocket

stream io InputStream, OutputStream, Reader, Writer,

InputStreamReader, OutputStreamWriter,

BufferedReader, BufferedWriter

B.7 Common

There are various interfaces that are common across a number of SWANS layers

and tie the system together. The most important interface of this kind is Message.

It represents a packet transfered along the network stack and it must be timeless

(or immutable). Components at various layers define their own message struc-

tures. Many of these instances recursively store messages within their payload,

thus forming a message chain that encodes the hierachical header structure of the

message. Other common elements include a node, node location, protocol number

mapper and miscellaneous utilities.

jist.swans.misc.*

interface package implementations

Message jist.swans.misc MessageBytes, MessageNest

151

jist.swans.misc.*

interface package implementations

jist.swans.mac Mac802 11.RTS, .CTS, .ACK, .DATA, etc.

jist.swans.net NetIp.IpMessage

jist.swans.route RouteZrp.IARP, RouteDsr.RREQ, etc.

jist.swans.trans TransUdp.UdpMessage,

TransTcp.TcpMessage, etc.

Appendix C

Event Micro-benchmarks
This section provides simplified versions of the benchmark programs used to mea-

sure the event throughput of the JiST, Parsec, GloMoSim, and ns2 systems in

section 5.2. To the best of my knowledge, these are the fastest possible imple-

mentations. These listings do not include command-line parsing, integration code

scattered in various common files (in case of GloMoSim and ns2), error handling, or

the code for timing the run. They closely reflect the style of code that a simulation

developer would generate.

C.1 JiST

Jist.java
import jist.runtime.JistAPI;

class Jist implements JistAPI.Entity {

public static void main(String args[]) {

JistAPI.endAt(1000000);

(new Jist()).event();

}

public void event() {

JistAPI.sleep(1);

event();

}

}

C.2 Parsec

parsec.pc
message null { };

entity driver(int argc, char **argv) {

int i;

for(i=0; i<1000000; i++) {

send null { }

to self

after 1;

receive(null p) { }

}

}

152

153

C.3 GloMoSim

glomo.h
#define MODE_NULL 0

typedef struct {

int n; // number of events processed

int size; // total number of events

} app_t;

void benchInit(GlomoNode *nodePtr);

void benchFinalize(GlomoNode *nodePtr, app_t *clientPtr);

void benchProcess(GlomoNode *nodePtr, Message *msg);

glomo.pc
#include "api.h"

#include "message.h"

#include "application.h"

#include "glomo.h"

static app_t *allocApp(GlomoNode *nodePtr) {

// allocate application object in node structure

}

static app_t *getApp(GlomoNode *nodePtr) {

// retrieve application object from node structure

}

void benchInit(GlomoNode *nodePtr) {

app_t *clientPtr = allocApp(nodePtr);

clientPtr->n = 0;

clientPtr->size = 1000000;

clientPtr->type = MODE_NULL;

Message *timerMsg = GLOMO_MsgAlloc(nodePtr, GLOMO_APP_LAYER,

APP_JISTBENCH, MSG_APP_TimerExpired);

GLOMO_MsgSend(nodePtr, timerMsg, 0);

}

void benchFinalize(GlomoNode *nodePtr, app_t *clientPtr) {

// finalization code

}

void benchProcess(GlomoNode *nodePtr, Message *msg) {

switch(msg->eventType) {

case MSG_APP_TimerExpired: {

app_t *clientPtr = getApp(nodePtr);

clientPtr->n++;

if(clientPtr->n < clientPtr->size) {

Message *timerMsg;

timerMsg = GLOMO_MsgAlloc(nodePtr, GLOMO_APP_LAYER,

APP_JISTBENCH, MSG_APP_TimerExpired);

switch(clientPtr->type) {

case MODE_NULL:

GLOMO_MsgSend(nodePtr, timerMsg, 1);

break;

default: // error

}

}

break;
}

default: // error

}

if(msg->info) free(msg->info);

GLOMO_MsgFree(nodePtr, msg);

}

154

C.4 ns2-C

ns2.tcl
JistBenchEvents set events_ 0

JistBenchEvents set debug_ 0

set s [new Simulator]

set foo [new JistBenchEvents]

$foo set events_ 1000000

$foo schedulefirst

$s run

ns2.h
#include <tclcl.h>

#include "object.h"

class JistBenchEvents : public NsObject {

protected:
double events_;

public:
JistBenchEvents();

void handle(Event* e);

void schedulefirst();

double events() { return events_; }

protected:
int command(int argc, const char*const* argv);

};

155

ns2.cc
#include "jist.h"

#include "scheduler.h"

#include "ns2.h"

static class JistBenchEventsClass : public TclClass {

public:

JistBenchEventsClass() : TclClass("JistBenchEvents") { }

TclObject* create(int argc, char** argv) {

return (new JistBenchEvents);

}

} class_jist_bench_events;

JistBenchEvents::JistBenchEvents() {

bind("events_", &events_);

}

int JistBenchEvents::command(int argc, char** argv) {

if (argc==2) {

if(strcmp(argv[1], "schedulefirst")==0) {

schedulefirst();

return TCL_OK;

}

}

return TclObject::command(argc, argv);

}

void JistBenchEvents::schedulefirst() {

Scheduler& s = Scheduler::instance();

Event *ev = new Event;

s.schedule(this, ev, 0);

}

void JistBenchEvents::handle(Event* ev) {

delete ev;

if(events_) {

Scheduler& s = Scheduler::instance();

ev = new Event;

s.schedule(this, ev, 1);

events_--;

}

}

BIBLIOGRAPHY

[1] Abrams, M. Object library for parallel simulation (OLPS). In Winter
Simulation Conference (Dec. 1988), pp. 210–219.

[2] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci,
E. Wireless sensor networks: A survey. Computer Networks 38, 4 (2002),
393–422.

[3] Alpern, B., Attanasio, C. R., Barton, J. J., Cocchi, A., Hummel,
S. F., Lieber, D., Ngo, T., Mergen, M. F., Shepherd, J. C., and
Smith, S. Implementing Jalapeño in Java. In Object-Oriented Programming
Systems, Languages and Applications (Nov. 1999), pp. 314–324.

[4] America, P., and van der Linden, F. A parallel object-oriented lan-
guage with inheritance and subtyping. In Object-Oriented Programming Sys-
tems, Languages and Applications (Oct. 1990), pp. 161–168.

[5] Anderson, D., Balakrishnan, H., Kaashoek, F., and Morris, R.
Resilient overlay networks. In ACM Symposium on Operating Systems Prin-
ciples (Oct. 2001).

[6] Aridor, Y., Factor, M., and Teperman, A. cJVM: A single system
image of a JVM on a cluster. In International Conference on Parallel Pro-
cessing (Sept. 1999).

[7] Arpacioglu, O., Small, T., and Haas, Z. J. Notes on scalability
of wireless ad hoc networks. http://wnl.ece.cornell.edu/Publications/
draft-irtf-ans-scalability-defi%nition-01.txt, Dec. 2003.

[8] Baezner, D., Lomow, G., and Unger, B. W. Sim++: The transition
to distributed simulation. In SCS Multiconference on Distributed Simulation
(Jan. 1990), pp. 211–218.

[9] Bagley, D. The great computer language shoot-out, 2001. http://www.

bagley.org/~doug/shootout/.

[10] Bagrodia, R. L., and Liao, W.-T. Maisie: A language for the design
of efficient discrete-event simulations. IEEE Transactions on Software Engi-
neering 20, 4 (Apr. 1994), 225–238.

[11] Bagrodia, R. L., Meyer, R., Takai, M., Chen, Y., Zeng, X., Mar-
tin, J., and Song, H. Y. Parsec: A parallel simulation environment for
complex systems. IEEE Computer 31, 10 (Oct. 1998), 77–85.

[12] Barr, R., Bicket, J. C., Dantas, D. S., Du, B., Kim, T. W. D.,
Zhou, B., and Sirer, E. G. On the need for system-level support for ad
hoc and sensor networks. ACM SIGOPS Operating Systems Review 36, 2
(Apr. 2002), 1–5.

156

157

[13] Barr, R., Kim, T. D., Fung, I. Y. Y., and Sirer, E. G. Automatic
code placement alternatives for ad hoc and sensor networks. Tech. Rep.
2001-1853, Cornell University, Computer Science, Nov. 2001.

[14] Begel, A., MacDonald, J., and Shilman, M. PicoThreads:
Lightweight threads in Java. Tech. rep., UC Berkeley, 2000.

[15] Bellur, B., and Ogier, R. G. A reliable, efficient topology broadcast
protocol for dynamic networks. In IEEE INFOCOM ’99 (Mar. 1999).

[16] Bershad, B., Savage, S., Pardyak, P., Sirer, E. G., Becker, D.,
Fiuczynski, M., Chambers, C., and Eggers, S. Extensibility, safety
and performance in the SPIN operating system. In ACM Symposium on
Operating Systems Principles (Dec. 1995).

[17] Bhattacharyya, S., Cheong, E., Davis II, J., Goel, M., Hylands,
C., Kienhuis, B., Lee, E., Liu, J., Liu, X., Muliadi, L., Neuendorf-
fer, S., Reekie, J., Smyth, N., Tsay, J., Vogel, B., Williams, W.,
Xiong, Y., and Zheng, H. Heterogeneous concurrent modeling and design
in Java. Tech. Rep. UCB/ERL M02/23, UC Berkeley, EECS, Aug. 2002.

[18] Biberstein, M., Gil, J., and Porat, S. Sealing, encapsulation, and
mutability. In European Conference on Object-Oriented Programming (June
2001), pp. 28–52.

[19] Booth, C. J. M., and Bruce, D. I. Stack-free process-oriented sim-
ulation. In Workshop on Parallel and Distributed Simulation (June 1997),
pp. 182–185.

[20] Bouchenak, S., and Hagimont, D. Zero overhead java thread migration.
Tech. Rep. 0261, INRIA, 2002.

[21] Boukerche, A., Das, S. K., and Fabbri, A. SWiMNet: A scalable par-
allel simulation testbed for wireless and mobile networks. Wireless Networks
7 (2001), 467–486.

[22] Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y.-C., and Jetcheva,
J. A performance comparison of multi-hop wireless ad hoc network routing
protocols. In Mobile Computing and Networking (Oct. 1998), pp. 85–97.

[23] Bruce, D. What makes a good domain-specific language? APOSTLE, and
its approach to parallel discrete event simulation. In Workshop on Domain-
specific Languages (Jan. 1997).

[24] Bryan, Jr., O. Modsim II - an object-oriented simulation language for
sequential and parallel processors. In Winter Simulation Conference (Dec.
1989), pp. 122–127.

158

[25] Byrd, R. J., Smith, S. E., and deJong, S. P. An actor-based program-
ming system. In Proceedings of the SIGOA Conference on Office information
systems (1982), pp. 67–78.

[26] Carothers, C. D., Perumalla, K. S., and Fujimoto, R. M. Efficient
optimistic parallel simulations using reverse computation. In Workshop on
Parallel and Distributed Simulation (May 1999), pp. 126–135.

[27] Chandy, K. M., and Misra, J. Distributed simulation: a case study
in design and verification of distributed programs. IEEE Transactions on
Software Engineering 5 (1979), 440–452.

[28] Chandy, K. M., and Sherman, R. The conditional event approach to
distributed simulation. In Distributed Simulation Conference (1989).

[29] Clausen, T., Jacquet, P., Laouiti, A., Muhlethaler, P., Qayyum,
A., and Viennot, L. Optimized link state routing protocol. In IEEE
INMIC (2001).

[30] Dahl, O.-J., and Nygaard, K. Simula, an Algol-based simulation lan-
guage. Communications of the ACM (1966), 671–678.

[31] Dahm, M. Byte code engineering with the BCEL API. Tech. Rep. B-17-98,
Freie Universität Berlin, Institut für Informatik, Apr. 2001.

[32] Das, S. R., Fujimoto, R. M., Panesar, K. S., Allison, D., and
Hybinette, M. GTW: A time warp system for shared memory multipro-
cessors. In Winter Simulation Conference (Dec. 1994), pp. 1332–1339.

[33] de Lara, J., and Alfonseca, M. Visual interactive simulation for dis-
tance education. Simulation: Transactions of the Society for Modeling and
Simulation International 1, 79 (2003), 19–34.

[34] Default TTL Values in TCP/IP. http://secfr.nerim.net/docs/

fingerprint/en/ttl_default.html.

[35] Fujimoto, R., Riley, G., Perumalla, K., Park, A., Wu, H., and
Ammar, M. Large-scale network simulation: how big? how fast? In Sym-
posium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication (Oct. 2003).

[36] Fujimoto, R. M. Parallel discrete event simulation. Communications of
the ACM 33, 10 (Oct. 1990), 30–53.

[37] Fujimoto, R. M. Parallel and distributed simulation. In Winter Simulation
Conference (Dec. 1995), pp. 118–125.

159

[38] Fujimoto, R. M., and Hybinette, M. Computing global virtual time
in shared-memory multiprocessors. ACM Transactions on Modelling and
Computer Simulation 7, 4 (Aug. 1997), 425–446.

[39] Gehani, S., and Benson, G. xDU: A Java-based framework for dis-
tributed programming and application interoperability. In Parallel and Dis-
tributed Computing and Systems Conference (2000).

[40] Gomes, F., Cleary, J., Covington, A., Franks, S., Unger, B., and
Ziao, Z. SimKit: a high performance logical process simulation class library
in C++. In Winter Simulation Conference (Dec. 1995), pp. 706–713.

[41] Gomes, F., Unger, B., and Cleary, J. Language-based state-saving ex-
tensions for optimistic parallel simulation. In Winter Simulation Conference
(Dec. 1996), pp. 794–800.

[42] Gosling, J., Joy, B., and Steele, G. The Java Language Specification.
Addison-Wesley, 1996.

[43] Grossglauser, M., and Tse, D. Mobility increases the capacity of wire-
less adhoc networks. IEEE/ACM Transactions on Networking 10 (Aug.
2002), 477–486.

[44] Guha, S., and Khuller, S. Approximation algorithms for connected
dominating sets. Algorithmica 20 (1998), 347–387.

[45] Gupta, P., and Kumar, P. The capacity of wireless networks. Trans. on
Info. Theory 46 (Mar. 2000), 388–404.

[46] Haas, Z. J. A new routing protocol for the reconfigurable wireless networks.
In IEEE Conference on Universal Personal Comm. (Oct. 1997).

[47] Haas, Z. J., Halpern, J. Y., and Li, L. Gossip-based ad hoc routing.
In IEEE INFOCOM ’02 (June 2002).

[48] Haas, Z. J., and Pearlman, M. R. The performance of query con-
trol schemes for the Zone Routing Protocol. IEEE/ACM Transactions on
Networking 9, 4 (Aug. 2001), 427–438.

[49] Hawblitzel, C., Chang, C.-C., Czajkowski, G., Hu, D., and von
Eicken, T. Implementing multiple protection domains in Java. In USENIX
Annual Technical Conference (June 1998), pp. 259–270.

[50] Healy, K. J., and Kilgore, R. A. Silk : A Java-based process simulation
language. In Winter Simulation Conference (Dec. 1997), pp. 475–482.

[51] Hoare, C. Communicating sequential processes. Communications of the
ACM 21, 8 (1978), 666–677.

160

[52] Howell, F., and McNab, R. SimJava: A discrete event simulation li-
brary for Java. In International Conference on Web-Based Modeling and
Simulation (Jan. 1998).

[53] Jefferson, D. R. Virtual time. ACM Transactions on Programming Lan-
guages and Systems 7, 3 (July 1985), 404–425.

[54] Jefferson, D. R., and et. al. Distributed simulation and the Time Warp
operating system. In ACM Symposium on Operating Systems Principles
(Nov. 1987), pp. 77–93.

[55] Jha, V., and Bagrodia, R. L. Transparent implementation of conser-
vative algorithms in parallel simulation languages. In Winter Simulation
Conference (Dec. 1993).

[56] Johnson, D. B. Validation of wireless and mobile network models and sim-
ulation. In DARPA/NIST Workshop on Validation of Large-Scale Network
Models and Simulation (May 1999).

[57] Johnson, D. B., and Maltz, D. A. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing. Kluwer Academic Publishers, 1996.

[58] Joines, J. A., and Roberts, S. D. Design of object-oriented simulations
in C++. In Winter Simulation Conference (Dec. 1994), pp. 157–165.

[59] Kafura, D. G., and Lee, K. H. Inheritance in Actor-based concurrent
object-oriented languages. IEEE Computer 32, 4 (1989), 297–304.

[60] Kelly, O., Lai, J., Mandayam, N. B., Ogielski, A. T., Panchal,
J., and Yates, R. D. Scalable parallel simulations of wireless networks
with WiPPET. Mobile Networks and Applications 5, 3 (2000), 199–208.

[61] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.-M., and Irwin, J. Aspect-oriented programming. European
Conference on Object-Oriented Programming 1241 (1997), 220–242.

[62] Kilgore, R. A., Healy, K. J., and Kleindorfer, G. B. The future
of Java-based simulation. In Winter Simulation Conference (Dec. 1998),
pp. 1707–1712.

[63] Lindholm, T., and Yellin, F. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[64] Liu, J., and Nicol, D. M. Dartmouth Scalable Simulation Framework
(DaSSF) 3.1 user’s manual, Apr. 2001.

[65] Liu, J., Perrone, L. F., Nicol, D. M., Liljenstam, M., Elliott,
C., and Pearson, D. Simulation modeling of large-scale ad-hoc sensor
networks. In Simulation Interoperability Workshop (2001).

161

[66] Ma, M. J. M., Wang, C.-L., Lau, F. C. M., and Xu, Z. JESSICA:
Java-enabled single system image computing architecture. In International
Conference on Parallel and Distributed Processing Techniques and Applica-
tions (June 1999), pp. 2781–2787.

[67] Martin, D. E., McBrayer, T. J., and Wilsey, P. A. Warped: A
time warp simulation kernel for analysis and application development. In
International Conference on System Sciences (Jan. 1996), pp. 383–386.

[68] Martin, J. M., and Bagrodia, R. L. Compose: An object-oriented
environment for parallel discrete-event simulations. In Winter Simulation
Conference (Dec. 1995), pp. 763–767.

[69] Mascarenhas, E., Knop, F., and Rego, V. Parasol: A multithreaded
system for parallel simulation based on mobile threads. In Winter Simulation
Conference (Dec. 1995), pp. 690–697.

[70] McCanne, S., and Floyd, S. ns (Network Simulator) at http://

www-nrg.ee.lbl.gov/ns, 1995.

[71] Misra, J. Distributed discrete event simulation. ACM Computing Surveys
18, 1 (Mar. 1986), 39–65.

[72] Modelnet. http://issg.cs.duke.edu/modelnet.html.

[73] Naoumov, V., and Gross, T. Simulation of large ad hoc networks. In
ACM MSWiM (2003), pp. 50–57.

[74] Ni, S., Tseng, Y., and Sheu, J. Efficient broadcasting in a mobile
ad hoc network. In IEEE International Conference of Distributed Computing
Systems (Apr. 2001), pp. 16–19.

[75] Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., and Sheu, J.-P. The broadcast
storm problem in a mobile ad hoc network. In ACM/IEEE International
Conference on Mobile Computing and Networking (MOBICOM) (Aug. 1999),
ACM Press, pp. 151–162.

[76] Nicol, D. M. Comparison of network simulators revisited, May 2002.

[77] Nicol, D. M., and Fujimoto, R. M. Parallel simulation today. Annals
of Operations Research (Dec. 1994), 249–285.

[78] Nicol, D. M., Johnson, M. M., and Yoshimura, A. S. The IDES
framework: a case study in development of a parallel discrete-event simula-
tion system. In Winter Simulation Conference (Dec. 1997), pp. 93–99.

[79] Opnet. http://www.opnet.com/.

162

[80] Park, V. D., and Corson, M. S. Temporally-ordered routing algorithm.
Internet Draft, Aug. 1998.

[81] Pechtchanski, I., and Sarkar, V. Immutability specification and its
applications. In Java Grande (Nov. 2002).

[82] Perkins, C. E., and Royer, E. M. Ad hoc on-demand distance vector
routing. In Workshop on Mobile Computing Syst. and Apps. (Feb. 1999),
pp. 90–100.

[83] Perumalla, K. S., Fujimoto, R. M., and Ogielski, A. TeD - a
language for modeling telecommunication networks. SIGMETRICS Perfor-
mance Evaluation Review 25, 4 (1998), 4–11.

[84] Philippsen, M., Haumacher, B., and Nester, C. More efficient se-
rialization and RMI for Java. Concurrency: Practice and Experience 12, 7
(2000), 495–518.

[85] Philippsen, M., and Zenger, M. JavaParty — Transparent remote
objects in Java. Concurrency: Practice and Experience 9, 11 (1997), 1225–
1242.

[86] Planetlab. http://www.planet-lab.org/.

[87] Preiss, B. R. The Yaddes distributed discrete event simulation specification
language and execution environment. In SCS Multiconference on Distributed
Simulation (1989), pp. 139–144.

[88] Qualnet. http://www.scalable-networks.com/.

[89] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker,
S. A scalable content addressable network. In SIGCOMM (2001).

[90] Riley, G. The Georgia Tech Network Simulator. In SIGCOMM Workshop
on Models, methods and tools for reproducible network research (2003), pp. 5–
12.

[91] Riley, G. PDNS, July 2003. http://www.cc.gatech.edu/computing/

compass/pdns/.

[92] Riley, G., and Ammar, M. Simulating large networks: How big is big
enough? In Conference on Grand Challenges for Modeling and Sim. (Jan.
2002).

[93] Riley, G., Fujimoto, R. M., and Ammar, M. A. A generic frame-
work for parallelization of network simulations. In Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication (Mar. 1999).

163

[94] Rowstron, A., and Druschel, P. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In ACM Confer-
ence on Distributed Systems Platforms (Nov. 2001), pp. 329–350.

[95] Royer, E., and Toh, C.-K. A review of current routing protocols for ad-
hoc mobile wireless networks. IEEE Personal Comm. (Apr. 1999), 46–55.

[96] Sakamoto, T., Sekiguchi, T., and Yonezawa, A. Bytecode transfor-
mation for portable thread migration in Java. In International Symposium
on Mobile Agents (2000).

[97] Samar, P., Pearlman, M., and Haas, Z. Independent zone routing: An
adaptive hybrid routing framework for ad hoc wireless networks. IEEE/ACM
Transactions on Networking (August 2004 (expected)).

[98] Sasson, Y., Cavin, D., and Schiper, A. Probabilistic broadcast for
flooding in wireless mobile ad hoc networks. In IEEE Wireless Communica-
tions and Networking Conference (Mar. 2003).

[99] Schwetman, H. Csim18 - the simulation engine. In Winter Simulation
Conference (Dec. 1996), pp. 517–521.

[100] Sekiguchi, T., Sakamoto, T., and Yonezawa, A. Portable imple-
mentation of continuation operators in imperative languages by exception
handling. Lecture Notes in Computer Science 2022 (2001), 217+.

[101] Steinman, J. S. SPEEDES: Synchronous parallel environment for emula-
tion and discrete event simulation. In SCS Multiconference on Advances in
Parallel and Distributed Simulation (Jan. 1991), pp. 95–101.

[102] Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakr-
ishnan, H. Chord: A scalable peer-to-peer lookup service for internet ap-
plications. In Conference on applications, technologies, architectures, and
protocols for computer communications (2001), pp. 149–160.

[103] Stojmenovic, I., Seddigh, M., and Zunic, J. Dominating sets and
neighbor elimination-based broadcasting algorithms in wireless networks.
IEEE Transactions on Parallel and Distributed Systems 13, 1 (2002), 14–
25.

[104] Tolksdorf, R. Programming languages for the Java virtual machine at
http://www.robert-tolksdorf.de/vmlanguages, 1996-.

[105] Tomlinson, C., and Singh, V. Inheritance and synchronization in
enabled-sets. In Object-Oriented Programming Systems, Languages and Ap-
plications (Oct. 1989), pp. 103–112.

164

[106] Tyan, H.-Y., and Hou, C.-J. JavaSim: A component based compositional
network simulation environment. In Western Simulation Multiconference
(Jan. 2001).

[107] Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon,
E., and Co, P. Soot - a Java optimization framework. In CASCON (1999),
pp. 125–135.

[108] Waldorf, J., and Bagrodia, R. L. MOOSE: A concurrent object-
oriented language for simulation. International Journal of Computer Simu-
lation 4, 2 (1994), 235–257.

[109] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S.,
Newbold, M., Hibler, M., Barb, C., and Joglekar, A. An inte-
grated experimental environment for distributed systems and networks. In
ACM Symposium on Operating Systems Design and Implementation (Dec.
2002).

[110] Williams, B., and Camp, T. Comparison of broadcasting techniques for
mobile ad hoc networks. In ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC) (2002), pp. 194–205.

[111] Zeng, X., Bagrodia, R. L., and Gerla, M. GloMoSim: a library for
parallel simulation of large-scale wireless networks. In Workshop on Parallel
and Distributed Simulation (May 1998).

[112] Zhao, B., Kubiatowicz, J., and Joseph, A. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing. Tech. Rep. UCB/CSD-
01-1141, UC Berkeley, Apr. 2001.

